cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273982 Number of little cubes visible around an n X n X n cube with a face on a table.

Original entry on oeis.org

1, 8, 25, 52, 89, 136, 193, 260, 337, 424, 521, 628, 745, 872, 1009, 1156, 1313, 1480, 1657, 1844, 2041, 2248, 2465, 2692, 2929, 3176, 3433, 3700, 3977, 4264, 4561, 4868, 5185, 5512, 5849, 6196, 6553, 6920, 7297, 7684, 8081, 8488, 8905, 9332, 9769, 10216
Offset: 1

Views

Author

Sébastien Dumortier, Jun 05 2016

Keywords

Comments

There are fewer visible cubes on the bottom than on the top.

Examples

			a(3)=25 because around a 3 X 3 X 3 cube, when it's on a table, it's possible to see only 25 little cubes (8 on each of the 2 bottom layers and 9 on the top layer).
		

Crossrefs

Programs

  • Magma
    [5*n^2-8*n+4: n in [1..60]]; // Vincenzo Librandi, Jun 06 2016
    
  • Maple
    A273982:=n->5*n^2-8*n+4: seq(A273982(n), n=1..60); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    Table[5 n^2 - 8 n + 4, {n, 46}] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 25}, 46] (* or *)
    CoefficientList[Series[(-1 - 5 x - 4 x^2)/(-1 + x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Oct 06 2017 *)
  • PARI
    a(n) = 5*n^2 - 8*n + 4; \\ Altug Alkan, Oct 06 2017

Formula

a(n) = 5*n^2 - 8*n + 4.
a(n) = n^3 - (n-2)^3 - (n-2)^2. - Joerg Arndt, Jun 06 2016
a(n) = A168668(n-1) + 1. - Altug Alkan, Oct 06 2017
G.f.: (-1 - 5*x - 4*x^2)/(-1 + x)^3. - Michael De Vlieger, Oct 06 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. - Wesley Ivan Hurt, Oct 06 2017
a(n) = A000566(n-1) + A000566(n), the sum of consecutive heptagonal numbers. - Charlie Marion, Jul 01 2021
a(n) = n^2 + 4*(n-1)^2. - Leo Tavares, Mar 24 2022

Extensions

a(2) corrected and entry edited by Andrey Zabolotskiy, Oct 06 2017