cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A274551 Numbers k such that sigma(k) == 0 (mod k+3).

Original entry on oeis.org

4, 8925, 32445, 442365
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2016

Keywords

Comments

a(5) > 10^8 if it exists. - Felix Fröhlich, Jul 01 2016
No more terms < 6.5*10^14. - Jud McCranie, Dec 02 2019
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			sigma(4) mod (4+3) = 7 mod 7 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | SumOfDivisors(n) mod (n+3) eq 0 ]; // Vincenzo Librandi, Jul 02 2016
  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 3] == 0 &] (* Michael De Vlieger, Jul 01 2016 *)
  • PARI
    is(n) = Mod(sigma(n), n+3)==0 \\ Felix Fröhlich, Jul 01 2016
    

A101223 Numbers m whose deficiency is 10, or: sigma(m) = 2m - 10.

Original entry on oeis.org

11, 21, 26, 68, 656, 2336, 8768, 133376, 528896, 34360918016, 35184409837568, 576460757135261696
Offset: 1

Views

Author

Vassil K. Tintschev (tinchev(AT)sunhe.jinr.ru), Dec 15 2004

Keywords

Comments

a(13) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
A subsequence of A274556. a(11) <= b(23) = 35184409837568 ~ 3.5*10^13, since b(k) := 2^(k-1)*(2^k+9) is in this sequence for all k in A057196 (2^k+9 is prime). All known terms except a(2) = 21 are of that form. - M. F. Hasler, Jul 18 2016
Any term x of this sequence can be combined with any term y of A223609 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			The divisors of 68 are {1, 2, 4, 17, 34, 68} and so sigma(68) = 1 + 2 + 4 + 17+ 24 + 68 = 126 = 2*68 - 10; thus, the deficiency of 68 is 10 so 68 is a term of the sequence.
		

Crossrefs

Cf. A033879, A033880, A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A125248 (deficiency 16).
Cf. also A274556.
Cf. A223609 (abundance 10).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)) eq 2*n-10]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    Select[ Range[ 85000000], DivisorSigma[1, # ] + 10 == 2# &]

Extensions

Edited and extended by Robert G. Wilson v, Dec 15 2004
a(10) from Donovan Johnson, Dec 23 2008
Edited by M. F. Hasler, Jul 18 2016
a(11)-a(12) from Hiroaki Yamanouchi, Aug 21 2018

A274566 Numbers k such that sigma(k) == 0 (mod k-10).

Original entry on oeis.org

6, 9, 11, 12, 14, 22, 40, 42, 46, 154, 190, 2656, 6490, 44650, 318250, 1360810, 1503370, 1788490, 3214090, 103712410, 3915380170, 6077111050, 9796360330, 10828121356, 33086522327050, 35966517350410, 11577093570201610, 16726040141635450, 576460762503970816
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(11) mod (11 - 10) = 12 mod 1 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | n ne 10 and SumOfDivisors(n) mod (n-10) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
    
  • Mathematica
    k = -10; Select[Range[1, 10^7], # + k != 0 && Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)
  • PARI
    isok(k) = (k!=10) && !(Mod(sigma(k), k-10)); \\ Michel Marcus, May 30 2025

Extensions

a(19)-a(24) from Giovanni Resta, Jul 06 2016
a(25)-a(26) from Jud McCranie, Dec 02 2019
Terms 6,9 inserted and a(27)-a(29) added by Max Alekseyev, May 30 2025

A274552 Numbers k such that sigma(k) == 0 (mod k-3).

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 15, 52, 315, 592, 1155, 2102272, 815634435
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2016

Keywords

Examples

			sigma(4) mod (4-3) = 7 mod 1 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | n ne 3 and SumOfDivisors(n) mod (n-3) eq 0 ]; // Vincenzo Librandi, Jul 02 2016
    
  • Mathematica
    k = -3; Select[Range[1, 10^6], # + k != 0 && Mod[DivisorSigma[1, #], # + k] == 0 &] (* Michael De Vlieger, Jul 01 2016 *)
  • PARI
    is(n) = if(n == 3, return(0), Mod(sigma(n), n-3)==0) \\ Felix Fröhlich, Jul 02 2016

Extensions

a(12)-a(13) from Giovanni Resta
a(1)=2 inserted by Max Alekseyev, Jun 08 2025

A274557 Numbers k such that sigma(k) == 0 (mod k+6).

Original entry on oeis.org

6, 24, 25, 30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 304, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(6) mod (6+6) = 12 mod 12 = 0.
		

Crossrefs

Programs

A274562 Numbers k such that sigma(k) == 0 (mod k-8).

Original entry on oeis.org

5, 6, 7, 9, 10, 11, 12, 14, 17, 38, 92, 168, 170, 248, 752, 988, 2528, 2808, 8648, 12008, 34688, 63248, 117808, 526688, 531968, 820808, 1292768, 1495688, 2095208, 2112512, 3477608, 4495808, 8419328, 12026888, 13192768, 16102808, 26347688, 29322008, 33653888, 169371008, 173631608, 293947648, 537116672, 883927808, 2147975168, 2493705728, 5556840416, 13092865928, 42783299288, 69662739968, 80999455688, 217898810368, 546409576448, 1020401174528, 1081071376208, 1282330216448, 1473186024448, 1577975316488, 1608005456768
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(9) mod (9 - 8) = 13 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6], # - 8 != 0 && Mod[DivisorSigma[1, #], # - 8] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(33)-a(59) from Giovanni Resta, Jul 05 2016
Terms 5,6,7 inserted by Max Alekseyev, Jun 04 2025

A274558 Numbers k such that sigma(k) == 0 (mod k-6).

Original entry on oeis.org

5, 7, 13, 14, 20, 30, 45, 76, 630, 688, 2310, 8896, 133888, 537051136, 1631268870, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Comments

Contains terms of A141549, odd terms of A141548 multiplied by 2, and 6 times terms of A191363 coprime to 6. - Max Alekseyev, May 25 2025

Examples

			sigma(7) mod (7-6) = 8 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[7, 10^6],  # - 6 != 0 && Mod[DivisorSigma[1, #], # - 6] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(14)-a(15) from Giovanni Resta
Term 5 inserted, a(16)-a(18) added by Max Alekseyev, Jun 04 2025

A274560 Numbers k such that sigma(k) == 0 (mod k-7).

Original entry on oeis.org

3, 5, 6, 8, 10, 11, 15, 27, 34, 72, 232, 34432, 549762629632
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(8) mod (8-7) = 15 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6], Mod[DivisorSigma[1, #], # - 7] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(13) from Giovanni Resta
Terms 3,5,6 inserted by Max Alekseyev, May 29 2025

A274564 Numbers k such that sigma(k) == 0 (mod k-9).

Original entry on oeis.org

6, 7, 8, 10, 11, 15, 19, 24, 33, 105, 33705, 33624064, 2199041081344
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(10) mod (10 - 9) = 18 mod 1 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [10..2*10^6] | SumOfDivisors(n) mod (n-9) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
    
  • Mathematica
    k = -9; Select[Range[Abs@k+1, 10^6], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)
  • PARI
    isok(k) = (k!=9) && (Mod(sigma(k), k-9) == 0); \\ Michel Marcus, May 30 2025

Extensions

a(12)-a(13) from Giovanni Resta, Jul 06 2016
Terms 6,7,8 inserted by Max Alekseyev, May 29 2025

A274559 Numbers k such that sigma(k) == 0 (mod k+7).

Original entry on oeis.org

8, 272, 7232, 30848, 516608, 134094848, 2146992128, 35184309174272
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(8) mod (8+7) = 15 mod 15 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 7] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(6)-a(7) from Giovanni Resta, Jul 05 2016
a(8) from Max Alekseyev, May 29 2025
Showing 1-10 of 11 results. Next