A274743 Repunits with odd indices multiplied by 99, i.e., 99*(1, 111, 11111, 1111111, ...).
99, 10989, 1099989, 109999989, 10999999989, 1099999999989, 109999999999989, 10999999999999989, 1099999999999999989, 109999999999999999989, 10999999999999999999989, 1099999999999999999999989, 109999999999999999999999989, 10999999999999999999999999989
Offset: 1
Examples
a(2) = 101*10989 - 100*99 = 1099989.
Links
- Rodolfo A. Fiorini, How Random is Your Tomographic Noise? A Number Theoretic Transform (NTT) Approach, Fundamenta Informaticae, 135(1-2), 2014, 135-170.
- Rodolfo A. Fiorini, Computerized tomography noise reduction by CICT optimized exponential cyclic sequences (OECS) co-domain, Fundamenta Informaticae, vol.141 (2015), 115-134.
- Index entries for linear recurrences with constant coefficients, signature (101,-100).
Programs
-
Magma
[11*(10^(2*n-1)-1) : n in [1..20]]; // Wesley Ivan Hurt, Jul 04 2016
-
Maple
A274743:=n->11*(10^(2*n-1)-1): seq(A274743(n), n=1..20); # Wesley Ivan Hurt, Jul 04 2016
-
Mathematica
Array[99(10^(2 # - 1) - 1)/9 &, 15] (* Michael De Vlieger, Jul 04 2016 *) 99*Table[FromDigits[PadRight[{},2n+1,1]],{n,0,15}] (* Harvey P. Dale, Jul 22 2019 *)
-
PARI
Vec(99*x*(1+10*x)/((1-x)*(1-100*x)) + O(x^99)) \\ Altug Alkan, Jul 05 2016
-
PARI
a002275(n) = (10^n-1)/9 a(n) = 99*a002275(2*n-1) \\ Felix Fröhlich, Jul 05 2016
Formula
a(n) = 101*a(n-1) - 100*a(n-2) for n>2, with a(0)= 99 and a(1)= 10989.
a(n) = 99*A100706(n-1).
G.f.: 99*x*(1 + 10*x)/((1 - x)*(1 - 100*x)). - Ilya Gutkovskiy, Jul 04 2016
a(n) = 11*(10^(2*n-1)-1). - Wesley Ivan Hurt, Jul 04 2016
E.g.f.: 11*(9 - 10*exp(x) + exp(100*x))/10. - Stefano Spezia, Aug 05 2024
Comments