A301414
Distinct terms of A301413 in ascending order: terms k in A301413 that have at least one number m such that k * A002110(m) is a highly composite number (A002182) with m distinct prime factors.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 216, 240, 288, 360, 480, 576, 720, 1080, 1440, 2160, 2880, 4320, 5040, 7200, 7560, 8640, 10080, 14400, 15120, 20160, 30240, 40320, 50400, 60480, 90720, 100800, 120960, 151200, 181440, 241920, 302400, 362880
Offset: 1
Plot of (n,k) with n in A002110 and k a term in this sequence such that A002110(n) * k is in A002182. Asterisks denote products that are in A002201.
{0,1} {1,1} {2,1}
1 2* 6*
{1,2} {2,2} {3,2}
4 12* 60*
{2,4} {3,4} {4,4}
24 120* 840
{2,6} {3,6} {4,6}
36 180 1260
{2,8} {3,8} {4,8}
48 240 1680
{3,12} {4,12} {5,12}
360* 2520* 27720
{3,24} {4,24} {5,24} {6,24}
720 5040* 55440* 720720*
{4,36} {5,36} {6,36}
7560 83160 1081080
{4,48} {5,48} {6,48}
10080 110880 1441440*
... ... ... ...
-
(* First load b-file from A002182 minus any comments therein *)
s = Import["b002182.txt","Data"][[All,-1]];
(* Alternatively, download Flammenkamp dataset, decompress and rename to "HCN.txt", then decode using the following in place of s above *)
s = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[Drop[StringSplit@ #, 2], 1] & /@ Import["HCN.txt", "Data"];
Union@ Array[#1/Product[Prime@ i, {i, #2}] & @@ {#, PrimeNu@ #} &@ s[[#]] &, Length@ s]
A281959
a(n) = sigma_25(n), the sum of the 25th powers of the divisors of n.
Original entry on oeis.org
1, 33554433, 847288609444, 1125899940397057, 298023223876953126, 28430288877251865252, 1341068619663964900808, 37778932988857102106625, 717897987692699877379693, 10000000298023223910507558, 108347059433883722041830252, 953962194872104906760006308
Offset: 1
For n = 6: The divisors of 6 are 1, 2, 3, 6, so a(6) = sigma_25(6) = 1^25 + 2^25 + 3^25 + 6^25 = 28430288877251865252. - _Felix Fröhlich_, Feb 03 2017
A275280
Irregular triangle listing numbers m of n that have prime divisors p that also divide n, in order of appearance in a matrix of products that arranges the powers of prime divisors p of n along independent axes.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 4, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 4, 8, 5, 10, 1, 11, 1, 2, 4, 8, 3, 6, 12, 9, 1, 13, 1, 2, 4, 8, 7, 14, 1, 3, 9, 5, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 4, 8, 16, 3, 6, 12, 9, 18, 1, 19, 1, 2, 4, 8, 16, 5, 10, 20, 1, 3, 9, 7, 21, 1, 2, 4, 8, 16, 11, 22, 1, 23
Offset: 1
Triangle begins:
1;
1, 2;
1, 3;
1, 2, 4;
1, 5;
1, 2, 4, 3, 6;
1, 7;
1, 2, 4, 8;
1, 3, 9;
1, 2, 4, 8, 5, 10;
1, 11;
1, 2, 4, 8, 3, 6, 12, 9;
1, 13;
1, 2, 4, 8, 7, 14;
1, 3, 9, 5, 15;
1 2, 4, 8, 16;
1, 17;
1, 2, 4, 8, 16, 3, 6, 12, 9, 18;
...
2 prime divisors: n = 96
1 2 4 8 16 32 64
3 6 12 24 48 96
9 18 36 72
27 54
81
thus a(96) = {1,2,4,8,16,32,64,3,6,12,24,48,96,9,18,36,72,27,54,81}.
The divisors of 72 (thus the terms of A275055(72)) appear in a rectangle delimited by 1 at top left and 72 at bottom right.
3 prime divisors: n = 60
(the 3 dimensional levels correspond with powers of 5)
level 5^0: level 5^1: level 5^2:
1 2 4 8 16 32 | 5 10 20 40 | 25 50
3 6 12 24 48 | 15 30 60 |
9 18 36 | 45 |
27 54 | |
thus a(60) = {1,2,4,8,16,32,3,6,12,24,48,9,18,36,27,54,5,10,20,40,15,30,60,45,25,50}.
The divisors of 60 (thus the terms of A275055(60)) appear in a parallelepiped delimited by 1 at top left of level 5^0 and 60 at bottom right of level 5^1.
Cf.
A162306,
A010846 (row length),
A243103 (row product),
A027750 (divisors of n),
A000005 (number of divisors of n),
A272618 (nondivisors m <= n that have prime divisors p that also divide n),
A243822 (number of such nondivisors of n),
A275055 (Product of tensor of prime divisor powers that are also divisors).
-
f[n_] := If[n == 1, 1, Function[w, ToExpression@ StringJoin["With[{n=", ToString@ n, "}, Table[", ToString@ InputForm[Times @@ Map[Power @@ # &, w]], ", ", Most@ Flatten@ Map[{#, ", "} &, #], "]]"] &@ MapIndexed[Function[p, StringJoin["{", ToString@ Last@ p, ", 0, Log[", ToString@ First@ p, ", n/(", ToString@ InputForm[Times @@ Map[Power @@ # &, Take[w, First@ #2 - 1]]], ")]}"]]@ w[[First@ #2]] &, w]]@ Map[{#, ToExpression["p" <> ToString@ PrimePi@ #]} &, Reverse[FactorInteger[n][[All, 1]]]] ]; Array[f, 24] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
Showing 1-3 of 3 results.
Comments