cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275707 Number of partial functions f:{1,2,...,n}->{1,2,...,n} such that every element in the domain of definition of f is mapped to a fixed point or to an element that is undefined by f.

Original entry on oeis.org

1, 2, 8, 38, 216, 1402, 10156, 80838, 698704, 6498674, 64579284, 681642238, 7605025720, 89318058858, 1100376445564, 14176837311158, 190498308591264, 2663482511782114, 38667106019619748, 581765160424218606, 9055862445043643656, 145619330650420134362
Offset: 0

Views

Author

Geoffrey Critzer, Aug 06 2016

Keywords

Examples

			G.f. = 1 + 2*x + 8*x^2 + 38*x^3 + 216*x^4 + 1402*x^5 + 10156*x^6 + ...
a(2) = 8 because there are 9 = A000169(3) partial functions on a set with 2 elements and all of them have the stated property except 1->2,2->1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n, k)*add(binomial(n-k, f)*
            (f+k)^(n-k-f), f=0..n-k), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 07 2016
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[ Exp[z Exp[z]]^2, {z, 0, nn}], z]
    Table[Sum[BellY[n, k, 2 Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace(exp(2*x*exp(x)))) \\ Joerg Arndt, Nov 10 2016
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    a(n) = sum(k=0, n, 2^k*k^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Jul 04 2022

Formula

E.g.f.: A(x)^2 = exp(2*B(x)) where A(x) is the e.g.f. for A000248 and B(x) is the e.g.f. for A000027.
E.g.f.: exp(2*x*exp(x)). - Joerg Arndt, Nov 10 2016
a(0) = 1; a(n) = Sum_{k=1..n} 2*k*binomial(n-1,k-1)*a(n-k). - Ilya Gutkovskiy, Nov 24 2017
From Seiichi Manyama, Jul 04 2022: (Start)
G.f.: Sum_{k>=0} (2 * x)^k/(1 - k*x)^(k+1).
a(n) = Sum_{k=0..n} 2^k * k^(n-k) * binomial(n,k). (End)
a(n) ~ n^(n + 1/2) * exp(2*r*exp(r) - r/2 - n) / (sqrt(2*(1 + 3*r + r^2)) * r^(n + 1/2)), where r = 2*w - 1/(2*w) + 5/(8*w^2) - 19/(24*w^3) + 209/(192*w^4) - 763/(480*w^5) + 4657/(1920*w^6) - 6855/(1792*w^7) + 199613/(32256*w^8) + ... and w = LambertW(sqrt(n)/2^(3/2)). - Vaclav Kotesovec, Jul 06 2022