cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276009 Decrement each nonzero digit by one in factorial base representation of n: a(n) = n - A276008(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 8, 8, 12, 12, 12, 12, 14, 14, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 8, 8, 12, 12, 12, 12, 14, 14, 24, 24, 24, 24, 26, 26, 24, 24, 24, 24, 26, 26, 30, 30, 30, 30, 32, 32, 36, 36, 36, 36, 38, 38, 48, 48, 48, 48, 50, 50, 48, 48, 48, 48, 50, 50, 54, 54, 54, 54, 56, 56, 60, 60, 60, 60, 62, 62, 72, 72, 72, 72
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Examples

			For n=23 whose factorial base representation is "321", when we subtract one from each digit we get "210", the factorial base representation of 14, thus a(23) = 14.
For n=37 ("1201"), when we subtract one from each digit we get "0100", thus a(37) = 6 as A007623(6) = 100.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; s = Max[# - 1, 0]& /@ s; Total[s*Range[Length[s]]!]]; Array[a, 100, 0] (* Amiram Eldar, Feb 14 2024 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return sum([int(y[i])*f(i + 1) for i in range(len(y))]) print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 21 2017

  • Scheme
    (define (A276009 n) (- n (A276008 n)))
    ;; Standalone version:
    (define (A276009 n) (let loop ((n n) (s 0) (f 1) (i 2)) (if (zero? n) s (let ((d (modulo n i))) (if (zero? d) (loop (/ n i) s (* i f) (+ 1 i)) (loop (/ (- n d) i) (+ s (* f (- d 1))) (* i f) (+ 1 i)))))))
    

Formula

a(n) = n - A276008(n).

A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Numbers that are sums of distinct factorials (0! and 1! not treated as distinct).
Complement of A115945; A115944(a(n)) > 0; A115647 is a subsequence. - Reinhard Zumkeller, Feb 02 2006
A115944(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
From Tilman Piesk, Jun 04 2012: (Start)
The inversion vector (compare A007623) of finite permutation a(n) (compare A055089, A195663) has only zeros and ones. Interpreted as a binary number it is 2*n (or n when the inversion vector is defined without the leading 0).
The inversion set of finite permutation a(n) interpreted as a binary number (compare A211362) is A211364(n).
(End)

Examples

			128 is in the sequence since 5! + 3! + 2! = 128.
a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Indices of zeros in A257684.
Cf. A275736 (left inverse).
Cf. A025494, A060112 (subsequences).
Subsequence of A060132, A256450 and A275804.
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A089625 (primes), A022290 (Fibonacci), A197433 (Catalans), A276091 (n*n!), A275959 ((2n)!/2). Cf. also A276082 & A276083.

Programs

  • Haskell
    import Data.List (elemIndices)
    a059590 n = a059590_list !! n
    a059590_list = elemIndices 1 $ map a115944 [0..]
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Maple
    [seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # next Maple program:
    a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..57);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[n_] :=  Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
  • PARI
    a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0)
    msb(n) = 2^#binary(n)>>1
    {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
    
  • Python
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(facbase(k, f) for k in range(2**N))
    print(auptoN(5)) # Michael S. Branicky, Oct 15 2022

Formula

G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1). - Philippe Deléham, Oct 15 2011
From Antti Karttunen, Aug 19 2016: (Start)
a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A153880(a(n)).
a(n) = A225901(A276091(n)).
a(n) = A276075(A019565(n)).
a(A275727(n)) = A276008(n).
A275736(a(n)) = n.
A276076(a(n)) = A019565(n).
A007623(a(n)) = A007088(n).
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016

Extensions

Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016

A328841 Substitute ones for all nonzero digits in primorial base expansion of n, then convert back to decimal.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 6, 7, 8, 9, 8, 9, 6, 7, 8, 9, 8, 9, 6, 7, 8, 9, 8, 9, 6, 7, 8, 9, 8, 9, 30, 31, 32, 33, 32, 33, 36, 37, 38, 39, 38, 39, 36, 37, 38, 39, 38, 39, 36, 37, 38, 39, 38, 39, 36, 37, 38, 39, 38, 39, 30, 31, 32, 33, 32, 33, 36, 37, 38, 39, 38, 39, 36, 37, 38, 39, 38, 39, 36, 37, 38, 39, 38, 39, 36, 37, 38, 39, 38, 39, 30
Offset: 0

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Crossrefs

Cf. A276156 (fixed points).
Cf. A276008 for analogous sequence.

Programs

  • PARI
    A328841(n) = { my(p=2, r=1, s=0); while(n, s += ((!!(n%p))*r); r *= p; n = n\p; p = nextprime(1+p)); (s); };

Formula

a(n) = n - A328842(n).
For all n>= 0, a(A276086(n)) = A328843(n).
For all n >= 1, A257993(a(n)) = A257993(n).
For all n >= 0, A328570(a(n)) = A328570(n), A328620(a(n)) = A328620(n), and A267263(a(n)) = A267263(n).
Showing 1-3 of 3 results.