A276305 Primes p such that d(p*(2p+1)) = 12 where d(n) is the number of divisors of n (A000005).
31, 37, 73, 103, 137, 139, 181, 193, 211, 269, 373, 433, 463, 541, 563, 571, 587, 733, 751, 859, 887, 929, 1021, 1129, 1151, 1381, 1399, 1489, 1637, 1723, 1993, 2053, 2083, 2087, 2237, 2521, 2621, 2731, 2837, 2843, 2909, 3109, 3137, 3209, 3271, 3313, 3323, 3343, 3541, 4091
Offset: 1
Keywords
Examples
Consider 31. Then 31*((2*31)+1) = 2*(31^2) + 31 = 1953 = 3*3*7*31 and d(1953) = 12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [0..5000] | NumberOfDivisors(2*n+1) eq 6 and IsPrime(n)]; // Vincenzo Librandi, Aug 30 2016
-
Mathematica
Select[Prime@ Range@ 576, DivisorSigma[0, # (2 # + 1)] == 12 &] (* Michael De Vlieger, Aug 30 2016 *)
-
PARI
is(n) = ispseudoprime(n) && numdiv(n*(2*n+1))==12 \\ Felix Fröhlich, Aug 29 2016
-
PARI
is(n)=numdiv(2*n+1)==6 && isprime(n) \\ Charles R Greathouse IV, Aug 29 2016
Extensions
More terms from Antti Karttunen, Aug 29 2016
Comments