cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A269562 Array read by antidiagonals: T(n,m) is the number of Hamiltonian cycles in the rook graph K_n X K_m.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 3, 3, 3, 12, 30, 48, 30, 12, 60, 480, 1566, 1566, 480, 60, 360, 12000, 126120, 284112, 126120, 12000, 360, 2520, 430920, 18153720, 122330880, 122330880, 18153720, 430920, 2520, 20160, 21052080, 4357332000, 112777827840, 335750676480, 112777827840, 4357332000, 21052080, 20160
Offset: 1

Views

Author

Andrew Howroyd, Feb 29 2016

Keywords

Comments

Equivalently, the number of rook tours on an n X m lattice.
2*T(n,m) is divisible by (n-1)!*(m-1)!. - Andrew Howroyd, Feb 08 2021

Examples

			Array begins:
=============================================================
n\m |   1      2          3            4                5
----+--------------------------------------------------------
  1 |   0      0          1            3               12 ...
  2 |   0      1          3           30              480 ...
  3 |   1      3         48         1566           126120 ...
  4 |   3     30       1566       284112        122330880 ...
  5 |  12    480     126120    122330880     335750676480 ...
  6 |  60  12000   18153720 112777827840 2190773906150400 ...
  7 | 360 430920 4357332000 ...
     ...
		

Crossrefs

Column 1 is A001710(n-1) for n >= 3.
Columns 2..4 are A276356, A341498, A341499.
Main diagonal is A269561.

Formula

From Andrew Howroyd, Feb 08 2021: (Start)
T(n,m) = T(m,n).
T(n,1) = (n-1)!/2 for n >= 3. (End)

A089039 Number of circular permutations of 2n letters that are free of jealousy.

Original entry on oeis.org

1, 2, 6, 60, 960, 24000, 861840, 42104160, 2686763520, 217039253760, 21651071904000, 2614084251609600, 375698806311628800, 63383303286471168000, 12403896267489382656000, 2786994829444848422400000, 712575504763406361133056000
Offset: 1

Views

Author

Akemi Nakamura, Michihiro Takahashi, Shogaku Meitantei (naka(AT)sansu.org), Dec 03 2003

Keywords

Comments

The number of circular permutations of 2*n people consisting of n married couples, such that no one sits next to a person of the opposite sex who is not his or her spouse.
Limit_{n->oo} a(n)/(n-1)!^2 = Sum_{k>=1} 1/(k!*(k-1)!) = 1.590636854637329063382254424999666247954478159495536647132... (A096789).

Examples

			a(3)=6 because ABCcba, ACBbca, ABbacC, ACcabB, AabcCB, AacbBC are possible.
		

Programs

  • Mathematica
    a[1] = 1; a[n_] := n!*(n-2)!*HypergeometricPFQ[{1-n/2, 3/2-n/2}, {2, 2-n, 2-n}, 4]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Oct 30 2013, after symbolic sum *)
  • PARI
    a(n) = if (n==1, 1, sum (k=1, n\2, n!*(n-k-1)!^2/((k-1)!^2*(n-2*k)!*k))); \\ Michel Marcus, Sep 03 2013

Formula

a(1)=1, a(n) = Sum_{k=1..floor(n/2)} n!*(n-k-1)!^2/((k-1)!^2*(n-2*k)!*k) for n > 1.
a(n) = (n-1)!*(A001040(n-1) + A001053(n)) = 2*A276356(n), n > 1. - Conjectured by Mikhail Kurkov, Feb 10 2019 and proved by Max Alekseyev, Apr 23 2024 (see MO link)
a(n+4) = -(n+3)*(n+2)*(n*(n+1)*a(n) + 2*(n+1)^2*a(n+1) + n*(n+3)*a(n+2) - 2*a(n+3)) for all integer n>1. - conjectured by Michael Somos, Apr 21 2024. [The conjecture is equivalent to Kurkov's formula and thus is also proved. - Max Alekseyev, Apr 23 2024]

A360878 Number of (undirected) paths in the 2 X n rook graph.

Original entry on oeis.org

1, 12, 129, 1984, 45945, 1524156, 68838217, 4070403744, 305642504529, 28440008182540, 3214141725643761, 433856895597946272, 68964321078341276809, 12753724616472980432124, 2715405762438952565521785, 659549661987730244294458816, 181293528280954206831103494177
Offset: 1

Views

Author

Andrew Howroyd, Feb 25 2023

Keywords

Crossrefs

Row 2 of A360877.

Programs

  • PARI
    a(n)={sum(k=2, n, binomial(n,k)*k!) + sum(k=1, n, k*binomial(n,k)*binomial(k-1,k\2)*sum(i=0, n-k, binomial(n-k,i)*(k\2+i)!)*sum(i=0, n-k, binomial(n-k,i)*((k-1)\2+i)!))} \\ Andrew Howroyd, May 28 2025

Formula

a(n) = (Sum_{k=2..n} binomial(n,k)*k!) + (Sum_{k=1..n} k*binomial(n,k)*binomial(k-1, floor(k/2)) * (Sum_{i=0..n-k} binomial(n-k,i)*(floor(k/2)+i)!) * (Sum_{i=0..n-k} binomial(n-k,i)*(floor((k-1)/2)+i)!)). - Andrew Howroyd, May 28 2025

Extensions

a(8) onwards from Andrew Howroyd, May 28 2025
Showing 1-3 of 3 results.