A276542 Numbers k such that the k-th and (k+1)st triangular numbers have the same number of divisors.
3, 4, 5, 11, 17, 28, 29, 33, 41, 42, 52, 55, 59, 66, 68, 71, 76, 85, 88, 91, 93, 101, 107, 114, 123, 137, 141, 143, 149, 150, 159, 170, 172, 179, 183, 185, 186, 188, 191, 196, 197, 201, 203, 208, 213, 215, 217, 219, 227, 232, 235, 236, 239, 243, 244, 247, 265
Offset: 1
Keywords
Examples
a(3) = 5; T(5) = 5*(5+1)/2 = 15; T(5+1) = 6*(6+1)/2 = 21; 15 and 21 have 4 divisors each. a(6) = 28; T(28) = 28*(28+1)/2 = 406; T(28+1) = 29*(29+1)/2 = 435; 406 and 435 have 8 divisors each
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
GAP
T:=List([1..270],n->n*(n+1)/2);; a:=Filtered([1..Length(T)-1],i->Tau(T[i])=Tau(T[i+1])); # Muniru A Asiru, Dec 06 2018
-
Magma
[n: n in [1..300] | DivisorSigma(0, n*(n + 1) div 2) eq DivisorSigma(0, (n + 1)*(n + 1 + 1) div 2)]; // Vincenzo Librandi, Dec 06 2018
-
Maple
T:= seq(numtheory:-tau(n*(n+1)/2), n=1..1000): select(t -> T[t]=T[t+1], [$1..999]); # Robert Israel, Apr 09 2017
-
Mathematica
Select[Range[1000], DivisorSigma[0, #*(# + 1)/2] == DivisorSigma[0, (# + 1)*(# + 1 + 1)/2] &] SequencePosition[DivisorSigma[0,#]&/@Accumulate[Range[300]],{x_,x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 02 2018 *)
-
PARI
k=[]; for(n=1, 1000, a=numdiv(n*(n+1)/2); b=numdiv((n+1)*(n+1+1)/2); if(a==b, k=concat(k, n))); k
-
Python
from sympy import divisor_count for n in range(1,20): if divisor_count(n*(n+1)/2)==divisor_count((n+1)*(n+2)/2): print(n, end=', ') # Stefano Spezia, Dec 06 2018
Comments