A276592
Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
Original entry on oeis.org
1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 56963745931, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 14129659550745551130667441, 16103843159579478297227731
Offset: 1
-
seq(numer(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
-
a[n_]:=Numerator[Pi^(-2 n) (1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Numerator[(-1)^n SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Numerator[(-1)^n Residue[Zeta[s] Gamma[s] (1-2^(1-s)),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)
A276593
Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
Original entry on oeis.org
8, 96, 960, 161280, 2903040, 638668800, 49816166400, 83691159552000, 2845499424768000, 1946321606541312000, 408727537373675520000, 48662619743783485440000, 124089680346647887872000000, 174221911206693634572288000000, 70734095949917615636348928000000
Offset: 1
From _Seiichi Manyama_, Sep 03 2018: (Start)
n | Pi^(2*n) | a(n)/A276592(n)
--+---------------+------------------------------------
1 | 9.8... | 8
2 | 97.4... | 96
3 | 961.3... | 960
4 | 9488.5... | 161280/17 = 9487.0...
5 | 93648.0... | 2903040/31 = 93646.4...
6 | 924269.1... | 638668800/691 = 924267.4...
7 | 9122171.1... | 49816166400/5461 = 9122169.2... (End)
-
seq(denom(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
-
a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)
A276595
Denominator of the rational part of the sum of reciprocals of even powers of even numbers, i.e., Sum_{k>=1} 1/(2*k)^(2*n).
Original entry on oeis.org
24, 1440, 60480, 2419200, 95800320, 2615348736000, 149448499200, 21341245685760000, 10218188434341888000, 1605715325396582400000, 28202200078783610880000, 3387648273463487338905600000, 372269041039943663616000000, 75786531374911731038945280000000
Offset: 1
-
seq(denom(sum(1/(2*k)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..24);
seq(denom(bernoulli(2*n)/2/(2*n)!),n=1..24); # Robert Israel, Sep 18 2016
-
Table[Denominator[Zeta[2*n]/(2*Pi)^(2*n)], {n, 1, 30}] (* Terry D. Grant, Jun 19 2018 *)
-
a(n) = denominator(bernfrac(2*n)/(2*(2*n)!)); \\ Michel Marcus, Jul 05 2018
Showing 1-3 of 3 results.
Comments