A276852
Number of positive walks with n steps {-3,-2,-1,1,2,3} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 2, 7, 28, 121, 560, 2677, 13230, 66742, 343092, 1788681, 9439870, 50321865, 270594896, 1465941763, 7993664588, 43839212778, 241650560756, 1338084935826, 7439615051328, 41516113036777, 232452845782308, 1305500166481715, 7352433083806020, 41514430735834714
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1292
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k - x, h], {x, h}] + Sum[walks[n - 1, k + x, h], {x, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... -1, 1, ..., h} that end at altitude k *)
A276852[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 1, 3]) (* Davin Park, Oct 10 2016 *)
A276902
Number of positive walks with n steps {-3,-2,-1,0,1,2,3} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 3, 12, 56, 284, 1526, 8530, 49106, 289149, 1733347, 10542987, 64904203, 403632551, 2531971729, 16002136283, 101795589297, 651286316903, 4188174878517, 27055199929042, 175488689467350, 1142479579205721, 7462785088260791, 48896570201100002
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1189
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
A276902[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 1, 3]) (* Davin Park, Oct 10 2016 *)
A276903
Number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 2, 7, 25, 96, 382, 1567, 6575, 28096, 121847, 534953, 2373032, 10619922, 47890013, 217395690, 992640367, 4555957948, 21007405327, 97266928685, 452046424465, 2108022305795, 9860773604035, 46256877824220, 217555982625385, 1025667805621986, 4846240583558277
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1437
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
A276903[n_] := (Do[walks[m, k, 2], {m, n}, {k, 2 m}]; walks[n, 2, 2]) (* Davin Park, Oct 10 2016 *)
A276904
Number of positive walks with n steps {-3,-2,-1,0,1,2,3} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 3, 14, 68, 358, 1966, 11172, 65104, 387029, 2337919, 14309783, 88555917, 553171371, 3483277785, 22087378303, 140913963221, 903876307075, 5825742149049, 37710582868464, 245052827645474, 1598017940728401, 10454217006683855, 68591382498826168
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1189
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
walks[n_, k_, h_] = 0;
walks[1, k_, h_] := Boole[0 < k <= h];
walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
(* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
A276904[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 2, 3]) (* Davin Park, Oct 10 2016 *)
A111160
G.f.: C - Z; where C is the g.f. for the Catalan numbers (A000108) and Z is the g.f. for A055113 with offset 0.
Original entry on oeis.org
0, 1, 1, 4, 9, 31, 91, 309, 1009, 3481, 11956, 42065, 148655, 532039, 1915369, 6950452, 25357233, 93034813, 342888250, 1269246437, 4715945712, 17583623988, 65766726906, 246694006971, 927801717255, 3497918129001, 13217196871126, 50046561077947
Offset: 0
- T. D. Noe, Table of n, a(n) for n=0..200
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
- D. G. Rogers, Comments on A111160, A055113 and A006013
-
I:=[1,1,4]; [0] cat [n le 3 select I[n] else (n*(115*n^3 - 344*n^2 + 299*n - 82)*Self(n-1) + 4*(2*n-3)*(5*n^3 + 27*n^2 - 74*n + 30)*Self(n-2) - 36*(n-2)*(2*n-5)*(2*n-3)*(5*n-3)*Self(n-3))/(2*n*(n+1)*(2*n+1)*(5*n-8)): n in [1..30]]; // Vincenzo Librandi, Oct 06 2015
-
a := n -> (-1)^(n+1)*binomial(2*n+1,n)*hypergeom([-n-1,n/2+1/2,n/2],[n,n+1],4)/ (2*n+1);
[0, op([seq(round(evalf(a(n),32)), n=1..27)])]; # Peter Luschny, Oct 06 2015
-
CoefficientList[ Series[ -((-3 + Sqrt[1 - 4*x] + Sqrt[2]*Sqrt[1 + Sqrt[1 - 4x] + 6x])/(4x)), {x, 0, 10}], x] (* Robert G. Wilson v *)
-
a(n) = if(n==0, 0, sum(k=0, (n+1)/2, binomial(n-k,n-2*k+1)*binomial(2*n+1,k))/(2*n+1)); \\ Altug Alkan, Oct 05 2015
A277920
Number of positive walks with n steps {-4,-3,-2,-1,0,1,2,3,4} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 4, 20, 120, 780, 5382, 38638, 285762, 2162033, 16655167, 130193037, 1030117023, 8234025705, 66391916397, 539360587341, 4410492096741, 36274113675369, 299864297741292, 2490192142719336, 20764402240048267, 173784940354460219, 1459360304511145146
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1054
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
-
b:= proc(n, y) option remember; `if`(n=0, `if`(y=1, 1, 0),
add((h-> `if`(h<1, 0, b(n-1, h)))(y+d), d=-4..4))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Nov 12 2016
-
b[n_, y_] := b[n, y] = If[n == 0, If[y == 1, 1, 0], Sum[Function[h, If[h < 1, 0, b[n - 1, h]]][y + d], {d, -4, 4}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 03 2017, after Alois P. Heinz *)
A277921
Number of positive walks with n steps {-4,-3,-2,-1,0,1,2,3,4} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 4, 23, 142, 950, 6662, 48420, 361378, 2753687, 21334313, 167551836, 1330894754, 10673486660, 86306300366, 702872359332, 5759986152740, 47463395965108, 393027545388119, 3268814565684836, 27294209365111429, 228718165320327356, 1922825557218427271
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1053
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
A277922
Number of positive walks with n steps {-4,-3,-2,-1,1,2,3,4} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 3, 13, 71, 405, 2501, 15923, 104825, 704818, 4827957, 33549389, 235990887, 1676907903, 12019875907, 86804930199, 630999932585, 4613307289260, 33900874009698, 250257489686870, 1854982039556397, 13800559463237465, 103017222722691145, 771348369563479705
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
-
b:= proc(n, y) option remember; `if`(n=0, `if`(y=1, 1, 0), add
((h-> `if`(h<1, 0, b(n-1, h)))(y+d), d=[$-4..-1, $1..4]))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Nov 12 2016
-
b[n_, y_] := b[n, y] = If[n == 0, If[y == 1, 1, 0], Sum[Function[h, If[h < 1, 0, b[n - 1, h]]][y + d], {d, Join[Range[-4, -1], Range[4]]}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 03 2017, after Alois P. Heinz *)
A277923
Number of positive walks with n steps {-4,-3,-2,-1,1,2,3,4} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
Original entry on oeis.org
0, 1, 3, 16, 84, 505, 3121, 20180, 133604, 904512, 6224305, 43432093, 306524670, 2184389874, 15695947669, 113595885023, 827299204132, 6058526521135, 44586954104578, 329579179316696, 2445858862779018, 18216235711289695, 136113075865844577, 1020074492384232296
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1113
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
Showing 1-9 of 9 results.
Comments