cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A276901 Number of positive walks with n steps {-3,-2,-1,1,2,3} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.

Original entry on oeis.org

0, 1, 2, 9, 34, 159, 730, 3579, 17762, 90538, 467796, 2452727, 12997554, 69549847, 375159290, 2038068813, 11140256754, 61227097438, 338140106124, 1875581756078, 10444142352812, 58364192607047, 327203347219250, 1839778650617309, 10372512509521074
Offset: 0

Views

Author

Michael Wallner, Sep 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    walks[n_, k_, h_] = 0;
    walks[1, k_, h_] := Boole[0 < k <= h];
    walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k - x, h], {x, h}] + Sum[walks[n - 1, k + x, h], {x, h}];
    (* walks represents the number of positive walks with n steps {-h, -h+1, ... -1, 1, ..., h} that end at altitude k *)
    A276901[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 2, 3]) (* Davin Park, Oct 10 2016 *)

A276902 Number of positive walks with n steps {-3,-2,-1,0,1,2,3} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.

Original entry on oeis.org

0, 1, 3, 12, 56, 284, 1526, 8530, 49106, 289149, 1733347, 10542987, 64904203, 403632551, 2531971729, 16002136283, 101795589297, 651286316903, 4188174878517, 27055199929042, 175488689467350, 1142479579205721, 7462785088260791, 48896570201100002
Offset: 0

Views

Author

Michael Wallner, Sep 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    walks[n_, k_, h_] = 0;
    walks[1, k_, h_] := Boole[0 < k <= h];
    walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
    (* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
    A276902[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 1, 3]) (* Davin Park, Oct 10 2016 *)

A276903 Number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.

Original entry on oeis.org

0, 1, 2, 7, 25, 96, 382, 1567, 6575, 28096, 121847, 534953, 2373032, 10619922, 47890013, 217395690, 992640367, 4555957948, 21007405327, 97266928685, 452046424465, 2108022305795, 9860773604035, 46256877824220, 217555982625385, 1025667805621986, 4846240583558277
Offset: 0

Views

Author

Michael Wallner, Sep 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    walks[n_, k_, h_] = 0;
    walks[1, k_, h_] := Boole[0 < k <= h];
    walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
    (* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
    A276903[n_] := (Do[walks[m, k, 2], {m, n}, {k, 2 m}]; walks[n, 2, 2]) (* Davin Park, Oct 10 2016 *)

A276904 Number of positive walks with n steps {-3,-2,-1,0,1,2,3} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.

Original entry on oeis.org

0, 1, 3, 14, 68, 358, 1966, 11172, 65104, 387029, 2337919, 14309783, 88555917, 553171371, 3483277785, 22087378303, 140913963221, 903876307075, 5825742149049, 37710582868464, 245052827645474, 1598017940728401, 10454217006683855, 68591382498826168
Offset: 0

Views

Author

Michael Wallner, Sep 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    walks[n_, k_, h_] = 0;
    walks[1, k_, h_] := Boole[0 < k <= h];
    walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];
    (* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)
    A276904[n_] := (Do[walks[m, k, 3], {m, n}, {k, 3 m}]; walks[n, 2, 3]) (* Davin Park, Oct 10 2016 *)

Extensions

More terms from Alois P. Heinz, Oct 10 2016

A278398 Number of meanders (walks starting at the origin and ending at any altitude >= 0 that may touch but never go below the x-axis) with n steps from {-3,-2,-1,1,2,3}.

Original entry on oeis.org

1, 3, 15, 75, 400, 2169, 11989, 66985, 377718, 2144290, 12240943, 70193305, 404029950, 2332989921, 13508237399, 78399357623, 455959701700, 2656652705422, 15504203678738, 90614205677898, 530288460288008, 3107012752773125, 18223934202102463, 106996319699099591
Offset: 0

Views

Author

David Nguyen, Nov 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    frac[ex_] := Select[ex, Exponent[#, x] < 0&];
    seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -3, 3}] - 1; p = 1; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
    seq[24] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), m=sum(i=-3, 3, x^i)-1, p=1); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ Andrew Howroyd, Jun 27 2018

A278394 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-2,-1,1,2}.

Original entry on oeis.org

1, 2, 5, 17, 58, 209, 761, 2823, 10557, 39833, 151147, 576564, 2208163, 8486987, 32714813, 126430229, 489685674, 1900350201, 7387530575, 28763059410, 112142791763, 437774109384, 1710883748796, 6693281604018, 26210038447737, 102724200946467, 402925631267151
Offset: 0

Views

Author

David Nguyen, Nov 20 2016

Keywords

Comments

By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.

Crossrefs

Programs

  • Mathematica
    frac[ex_] := Select[ex, Exponent[#, x] < 0&];
    seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -2, 2}] - 1; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
    seq[27] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), m=sum(i=-2, 2, x^i)-1, p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ Andrew Howroyd, Jun 27 2018

A278396 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-4,-3,-2,-1,1,2,3,4}.

Original entry on oeis.org

1, 4, 22, 146, 1013, 7269, 53156, 394154, 2951950, 22279439, 169175927, 1290970376, 9891573310, 76050920691, 586426828071, 4533349152056, 35122039919110, 272634162463779, 2119948044144136, 16509519223752380, 128747868290672353, 1005273235488567875
Offset: 0

Views

Author

David Nguyen, Nov 20 2016

Keywords

Comments

By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.

Crossrefs

Programs

  • Mathematica
    frac[ex_] := Select[ex, Exponent[#, x] < 0&];
    seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -4, 4}] - 1; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
    seq[22] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), m=sum(i=-4, 4, x^i)-1, p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ Andrew Howroyd, Jun 27 2018

A278392 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-3,-2,-1,0,1,2,3}.

Original entry on oeis.org

1, 3, 15, 87, 530, 3329, 21316, 138345, 906853, 5989967, 39804817, 265812731, 1782288408, 11991201709, 80911836411, 547334588037, 3710610424765, 25204313298581, 171492983631249, 1168638213247713, 7974592724571446, 54484621312318007, 372671912259214487
Offset: 0

Views

Author

David Nguyen, Nov 20 2016

Keywords

Comments

By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.

Crossrefs

Programs

  • Mathematica
    frac[ex_] := Select[ex, Exponent[#, x] < 0&];
    seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -3, 3}]; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
    seq[23] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), m=sum(i=-3, 3, x^i), p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ Andrew Howroyd, Jun 27 2018

A278393 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-4,-3,-2,-1,0,1,2,3,4}.

Original entry on oeis.org

1, 4, 26, 194, 1521, 12289, 101205, 844711, 7120398, 60477913, 516774114, 4437360897, 38256405777, 330948944639, 2871299293535, 24973776734091, 217690276938940, 1901204163460913, 16632544424086901, 145730139895667887, 1278596503973570665, 11231908572986043199
Offset: 0

Views

Author

David Nguyen, Nov 20 2016

Keywords

Comments

By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.

Crossrefs

Programs

  • Mathematica
    frac[ex_] := Select[ex, Exponent[#, x] < 0&];
    seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -4, 4}]; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
    seq[22] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), m=sum(i=-4, 4, x^i), p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ Andrew Howroyd, Jun 27 2018

A278395 Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-3,-2,-1,1,2,3}.

Original entry on oeis.org

1, 3, 12, 60, 311, 1674, 9173, 51002, 286384, 1620776, 9228724, 52810792, 303447096, 1749612736, 10117583749, 58656027314, 340806249367, 1984018271850, 11569932938192, 67574451148408, 395214184047366, 2314315680481252, 13567587349336459, 79621279809031310
Offset: 0

Views

Author

David Nguyen, Nov 20 2016

Keywords

Comments

By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.

Crossrefs

Programs

  • Mathematica
    frac[ex_] := Select[ex, Exponent[#, x] < 0&];
    seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -3, 3}] - 1; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
    seq[24] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), m=sum(i=-3, 3, x^i)-1, p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ Andrew Howroyd, Jun 27 2018
Showing 1-10 of 14 results. Next