cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277120 Number of branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 11, 1, 3, 3, 15, 1, 11, 1, 11, 3, 3, 1, 45, 2, 3, 5, 11, 1, 19, 1, 51, 3, 3, 3, 62, 1, 3, 3, 45, 1, 19, 1, 11, 11, 3, 1, 195, 2, 11, 3, 11, 1, 45, 3, 45, 3, 3, 1, 113, 1, 3, 11, 188, 3, 19, 1, 11, 3, 19, 1, 345, 1, 3, 11, 11, 3
Offset: 1

Views

Author

Michel Marcus, Oct 01 2016

Keywords

Comments

Per the formula, a(n) = 1 at prime n. As the sequence extends, additional values become more frequent than 1. These values can be characterized, for example, a(n) = 19 is seen at n corresponding to A007304, a(n) = 3 is seen at n corresponding to A006881, a(n) = 113 is seen at n corresponding to A085987. - Bill McEachen, Dec 28 2023
From Antti Karttunen, Jan 02 2024: (Start)
The value of a(n) depends only on the prime signature of n. In other words, for all i, j >= 1, it holds that A101296(i) = A101296(j) => a(i) = a(j). Moreover, it seems that the converse proposition also holds, that for all i, j >= 1, a(i) = a(j) => A101296(i) = A101296(j), i.e., for each distinct prime signature there exists a distinct value of a(n). This has been empirically checked up to the first 21001 prime signatures in A025487 (see A366884), and can be proved if one can show that the latter sequence (equally: A366377) is injective. If this conjecture holds, it would imply an unlimited number of statements like those given in the previous comment (see the formula section of A101296).
Questions: Are there any terms of the form 10k+4 or 10k+6? What is the asymptotic density of terms of the form 10k+5 (those ending with digit "5")? Compare to the data shown in A366884.
For squarefree n > 1, a(n) is never even, and apparently, never a multiple of five. See comments in A052886.
(End)

Examples

			In this scheme, the following factorizations of 12 are counted as distinct: 12, 2 x 6, 2 x (2 x 3), 2 x (3 x 2), 3 x 4, 3 x (2 x 2), 4 x 3, (2 x 2) x 3, 6 x 2, (2 x 3) x 2, (3 x 2) x 2, thus a(12) = 11. - _Antti Karttunen_, Nov 02 2016, based on the illustration given at page 14 of Knopfmacher & Mays paper.
The following factorizations of 30 are counted as distinct: 30, 2 x 15, 15 x 2, 3 x 10, 10 x 3, 5 x 6, 6 x 5, 2 x (3 x 5), 2 x (5 x 3), 3 x (2 x 5), 3 x (5 x 2), 5 x (2 x 3), 5 x (3 x 2), (2 x 3) x 5, (2 x 5) x 3, (3 x 2) x 5, (3 x 5) x 2, (5 x 2) x 3, (5 x 3) x 2, thus a(30) = 19. - _Antti Karttunen_, Jan 02 2024
		

Crossrefs

After n=1 differs from A104725 for the next time at n=32, where a(32) = 51, while A104725(32) = 52.

Programs

  • C
    #include 
    #define MAX 10000
    /* Number of branching factorizations of n. */
    unsigned long n, m, a, b, p, x, nbr[MAX];
    int main(void)
    {
      for (x=n=1; nDaniel Mondot, Oct 01 2016 */
    
  • Mathematica
    v[n_] := v[n] = If[n == 1, 0, 1 + Sum[If[d == 1 || d^2 > n, 0, If[d^2 == n, 1, 2]*v[d]*v[n/d]], {d, Divisors[n]}]]; Table[v[n], {n, 1, 100}] (* Vaclav Kotesovec, Jan 13 2024, after Antti Karttunen *)
  • PARI
    A277120(n) = if(1==n, 0, 1+sumdiv(n, d, if((1==d)||(d*d)>n,0,if((d*d)==n,1,2)*A277120(d)*A277120(n/d)))); \\ Antti Karttunen, Nov 02 2016, after Daniel Mondot's C-program above.
    
  • PARI
    seq(n)={my(v=vector(n)); for(n=2, n, v[n] = 1 + sumdiv(n, d, v[d]*v[n/d])); v} \\ Andrew Howroyd, Nov 17 2018

Formula

a(1) = 0; for n > 1, a(n) = 1 + Sum_{d|n, 1 < d < n} a(d)*a(n/d). - Antti Karttunen, Nov 02 2016, after Daniel Mondot's C program, simplified Dec 30 2023.
For all n >= 1, a(prime^n) = A007317(n), and a(product of n distinct primes) = A052886(n). - Antti Karttunen, Dec 31 2023

Extensions

More terms from Daniel Mondot, Oct 01 2016