cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A052886 Expansion of e.g.f.: (1/2) - (1/2)*(5 - 4*exp(x))^(1/2).

Original entry on oeis.org

0, 1, 3, 19, 207, 3211, 64383, 1581259, 45948927, 1541641771, 58645296063, 2494091717899, 117258952478847, 6038838138717931, 338082244882740543, 20443414320405268939, 1327850160592214291967, 92200405122521276427691, 6815359767190023358085823, 534337135055010788022858379
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
From the symmetry present in Vladeta Jovovic's Feb 02 2005 formula, it is easy to see that there are no positive even numbers in this sequence. Question: are there any multiples of 5 after the initial zero? Compare also to the comments in A366884. - Antti Karttunen, Jan 02 2024

Crossrefs

Programs

  • Maple
    spec := [S,{C=Set(Z,1 <= card),S=Prod(B,C),B=Sequence(S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/2-1/2*(5-4*E^x)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
    a[n_] := Sum[k! StirlingS2[n, k] CatalanNumber[k - 1], {k, 1, n}];
    Array[a, 20, 0] (* Peter Luschny, Apr 30 2020 *)
  • PARI
    N=66; x='x+O('x^N);
    concat([0],Vec(serlaplace(serreverse(log(1+x-x^2)))))
    \\ Joerg Arndt, May 25 2011
    
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = 1+ sum(k=1, n-1, binomial(n,k)*va[k]*va[n-k]);); concat(0, va);} \\ Michel Marcus, Apr 30 2020
    
  • PARI
    A000108(n) = binomial(2*n, n)/(n+1);
    A052886(n) = sum(k=1,n,k!*stirling(n,k,2)*A000108(k-1)); \\ Antti Karttunen, Jan 02 2024

Formula

E.g.f.: (1/2) - (1/2)*(5 - 4*exp(x))^(1/2).
a(n) = 1 + Sum_{k=1..n-1} binomial(n,k)*a(k)*a(n-k). - Vladeta Jovovic, Feb 02 2005
a(n) = Sum_{k=1..n} k!*Stirling2(n,k)*C(k-1), where C(k) = Catalan numbers (A000108). - Vladimir Kruchinin, Sep 15 2010
a(n) ~ sqrt(5/2)/2 * n^(n-1) / (exp(n)*(log(5/4))^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
Equals the logarithmic derivative of A293379. - Paul D. Hanna, Oct 22 2017
O.g.f.: Sum_{k>=1} C(k-1)*Product_{r=1..k} r*x/(1-r*x), where C = A000108. - Petros Hadjicostas, Jun 12 2020
a(n) = A366377(A000040(n)) = A366884(A098719(n)). - Antti Karttunen, Jan 02 2024
From Seiichi Manyama, Sep 09 2024: (Start)
E.g.f. satisfies A(x) = (exp(x) - 1) / (1 - A(x)).
E.g.f.: Series_Reversion( log(1 + x * (1 - x)) ). (End)

Extensions

New name using e.g.f. by Vaclav Kotesovec, Sep 30 2013

A277130 Number of planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 14, 1, 3, 3, 24, 1, 14, 1, 14, 3, 3, 1, 78, 2, 3, 6, 14, 1, 25, 1, 112, 3, 3, 3, 110, 1, 3, 3, 78, 1, 25, 1, 14, 14, 3, 1, 464, 2, 14, 3, 14, 1, 78, 3, 78, 3, 3, 1, 206, 1, 3, 14, 568, 3, 25, 1, 14, 3, 25, 1, 850, 1, 3, 14, 14
Offset: 1

Views

Author

Michel Marcus, Oct 01 2016

Keywords

Comments

A planar branching factorization of n is either the number n itself or a sequence of at least two planar branching factorizations, one of each factor in an ordered factorization of n. - Gus Wiseman, Sep 11 2018

Examples

			From _Gus Wiseman_, Sep 11 2018: (Start)
The a(12) = 14 planar branching factorizations:
  12,
  (2*6), (3*4), (4*3), (6*2), (2*2*3), (2*3*2), (3*2*2),
  (2*(2*3)), (2*(3*2)), (3*(2*2)), ((2*2)*3), ((2*3)*2), ((3*2)*2).
(End)
		

Crossrefs

Programs

  • C
    #include 
    #include 
    #include 
    #define MAX 10000
    /* Number of planar branching factorizations of n. */
    #define lu unsigned long
    lu nbr[MAX]; /* number of branching */
    lu a, b, d, e; /* temporary variables */
    lu n; lu m, p; // factors of n
    lu x; // square root of n
    void main(unsigned argc, char *argv[])
    {
      memset(nbr, 0, MAX*sizeof(lu));
      for (b=0, n=1; nDaniel Mondot, May 19 2017 */
  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    otfs[n_]:=Prepend[Join@@Table[Tuples[otfs/@f],{f,Select[ordfacs[n],Length[#]>1&]}],n];
    Table[Length[otfs[n]],{n,20}] (* Gus Wiseman, Sep 11 2018 *)

Formula

a(prime^n) = A118376(n). a(product of n distinct primes) = A319122(n). - Gus Wiseman, Sep 11 2018

Extensions

Terms a(65) and beyond from Daniel Mondot, May 19 2017

A339755 a(1) = 1; a(n+1) = 1 + Sum_{d|n} a(n/d) * a(d).

Original entry on oeis.org

1, 2, 5, 11, 27, 55, 131, 263, 571, 1168, 2445, 4891, 10113, 20227, 40979, 82229, 165632, 331265, 665365, 1330731, 2666729, 5334769, 10679319, 21358639, 42740683, 85482096, 171004645, 342015001, 684113793, 1368227587, 2736633741, 5473267483, 10946869669, 21893763789, 43788190107
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 15 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory;
          1+add(a(d)*a((n-1)/d), d=divisors(n-1))
        end:
    seq(a(n), n=1..35);  # Alois P. Heinz, Dec 15 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + Sum[a[(n - 1)/d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 35}]

Formula

G.f.: x * (1/(1 - x) + Sum_{i>=1} Sum_{j>=1} a(i) * a(j) * x^(i*j)).
a(n) ~ c * 2^n, where c = 1.27442410710035207761153205319824525254716841098942446508584158048310907298... - Vaclav Kotesovec, Dec 16 2020

A366377 Number of branching factorizations of the primorial inflation of n.

Original entry on oeis.org

0, 1, 3, 2, 19, 11, 207, 5, 62, 113, 3211, 45, 64383, 1709, 911, 15, 1581259, 345, 45948927, 645, 17753, 33797, 1541641771, 195, 9332, 822821, 2405, 12405, 58645296063, 6525, 2494091717899, 51, 428309, 23765093, 223031, 1890, 117258952478847, 793795349, 12293957, 3585, 6038838138717931, 154605, 338082244882740543, 296805
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2023

Keywords

Comments

Conjecture: Sequence is injective (no value occurs more than once). If true, then also the conjecture given in A277120 is correct. See also A366884.

Crossrefs

Permutation of A366884.

Programs

Formula

a(n) = A277120(A108951(n)).
a(n) = A366884(A329901(n)).
For n >= 1, a(2^n) = A007317(n), a(A000040(n)) = A052886(n).

A366884 Number of branching factorizations of the least integer of each prime signature (A025487).

Original entry on oeis.org

0, 1, 2, 3, 5, 11, 15, 45, 19, 51, 62, 195, 113, 188, 345, 873, 645, 731, 1890, 911, 3989, 207, 2405, 3585, 2950, 10221, 6525, 18483, 1709, 15775, 19569, 12235, 54718, 43545, 86515, 12405, 99215, 9332, 105447, 51822, 55885, 290611, 17753, 120075, 277203, 408105, 83505, 605135, 80565, 562739, 223191, 432975, 1533670
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2024

Keywords

Comments

Sequence appears to be injective, but can it be proved? This would prove also the conjectures given in A277120 and A366377.
Of the first 21001 terms, there are 701 terms ending with digit "0", 614 with "1", 68 with "2", 570 with "3", 0 with "4", 17795 with "5", 0 with "6", 550 with "7", 67 with "8", and 636 with "9". Why such an overrepresentation (~ 85% of the total) of the terms of form 10k+5? Do any terms of the form 10k+4 or 10k+6 exist? See also the comments in A052886.

Crossrefs

Formula

a(n) = A277120(A025487(n)).
a(n) = A366377(A181815(n)).
For all n >= 1, a(A025488(n)) = A007317(n), a(A098719(n)) = A052886(n).

A351787 a(1) = 1; a(n+1) = a(n) + Sum_{d|n} a(n/d) * a(d).

Original entry on oeis.org

1, 2, 6, 18, 58, 174, 546, 1638, 4986, 14994, 45214, 135642, 407838, 1223514, 3672726, 11018874, 33063498, 99190494, 297593514, 892780542, 2678403690, 8035217622, 24105833722, 72317501166, 216953071986, 650859219322, 1952579289318, 5857737927786, 17573218697070
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[a[(n - 1)/d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 29}]

Formula

G.f.: x * ( 1 + Sum_{i>=1} Sum_{j>=1} a(i) * a(j) * x^(i*j) ) / (1 - x).

A351788 a(1) = 1; a(n) = a(n-1) + Sum_{d|n, 1 < d < n} a(n/d) * a(d).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 8, 9, 13, 13, 25, 25, 33, 37, 57, 57, 83, 83, 117, 125, 151, 151, 233, 237, 287, 305, 387, 387, 503, 503, 649, 675, 789, 805, 1073, 1073, 1239, 1289, 1607, 1607, 1955, 1955, 2309, 2419, 2721, 2721, 3465, 3481, 4007, 4121, 4795, 4795, 5643, 5695
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[If[1 < d < n, a[n/d] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]

Formula

G.f.: ( x + Sum_{i>=2} Sum_{j>=2} a(i) * a(j) * x^(i*j) ) / (1 - x).

A144757 Number of factor trees for n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 6, 2, 2, 1, 20, 1, 2, 2, 6, 1, 12, 1, 14, 2, 2, 2, 30, 1, 2, 2, 20, 1, 12, 1, 6, 6, 2, 1, 70, 1, 6, 2, 6, 1, 20, 2, 20, 2, 2, 1, 60, 1, 2, 6, 42, 2, 12, 1, 6, 2, 12, 1, 140, 1, 2, 6, 6, 2, 12, 1, 70, 5, 2, 1, 60, 2, 2, 2, 20, 1, 60, 2, 6, 2, 2, 2, 252
Offset: 2

Views

Author

David Radcliffe, Sep 20 2008

Keywords

Comments

A factor tree for n is a binary tree, with the root labeled with n and the terminal nodes labeled with primes, such that each non-terminal node is the product of its two child nodes. This is the number of prime factorizations of n, ignoring the commutativity and associativity of multiplication.

Examples

			a(12)=6 because 12 can be factored as (2*2)*3, (2*3)*2, (3*2)*2, 2*(2*3), 2*(3*2) and 3*(2*2).
		

Crossrefs

Programs

  • Haskell
    a144757 n = a000108 (a001222 n - 1) * a008480 n
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Mathematica
    a8480[n_] := With[{f = FactorInteger[n][[All, 2]]}, Total[f]!/Times @@ (f!)];
    a[n_] := CatalanNumber[PrimeOmega[n] - 1] * a8480[n];
    a /@ Range[2, 100] (* Jean-François Alcover, Sep 20 2019 *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=2, n, v[n] = isprime(n) + sumdiv(n, d, v[d]*v[n/d])); v[2..n]} \\ Andrew Howroyd, Nov 17 2018
    
  • PARI
    a(n)={if(n>=2, my(sig=factor(n)[,2]); my(t=vecsum(sig)-1); binomial(2*t, t)*t!/vecprod(apply(k->k!, sig)), 0)} \\ Andrew Howroyd, Nov 17 2018

Formula

a(n) = A000108(A001222(n)-1) * A008480(n).

A346116 a(1) = a(2) = 1; a(n+2) = 1 + Sum_{d|n} a(n/d) * a(d).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 11, 21, 23, 49, 51, 109, 103, 247, 207, 517, 435, 1086, 871, 2251, 1743, 4631, 3531, 9365, 7063, 19081, 14152, 38369, 28397, 77299, 56795, 155289, 113591, 311739, 227387, 624349, 454885, 1251509, 909771, 2504761, 1819955, 5014529, 3639911, 10033709, 7279823
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = 1 + Sum[a[(n - 2)/d] a[d], {d, Divisors[n - 2]}]; Table[a[n], {n, 1, 45}]

Formula

G.f.: x + x^2 * (1/(1 - x) + Sum_{i>=1} Sum_{j>=1} a(i) * a(j) * x^(i*j)).

A351797 a(1) = 1; a(n+1) = -a(n) + 2 * Sum_{d|n} a(n/d) * a(d).

Original entry on oeis.org

1, 1, 3, 9, 29, 87, 273, 819, 2493, 7497, 22607, 67821, 203919, 611757, 1836363, 5509437, 16531749, 49595247, 148796757, 446390271, 1339201845, 4017608811, 12052916861, 36158750583, 108476535993, 325429609661, 976289644659, 2928868963893, 8786609348535
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -a[n - 1] + 2 Sum[a[(n - 1)/d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 29}]

Formula

G.f.: x * ( 1 + 2 * Sum_{i>=1} Sum_{j>=2} a(i) * a(j) * x^(i*j) ) / (1 - x).
a(n) = A351787(n) / 2 for n > 1.
Showing 1-10 of 10 results.