cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086331 Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 2, 7, 43, 393, 4721, 69853, 1225757, 24866481, 572410513, 14738647221, 419682895325, 13094075689225, 444198818128313, 16278315877572141, 640854237634448101, 26973655480577228769, 1208724395795734172705, 57453178877303382607717, 2887169565412587866031533
Offset: 0

Views

Author

Vladeta Jovovic, Sep 01 2003

Keywords

Comments

Binomial transform of A000312. - Tilman Neumann, Dec 13 2008
a(n) is the number of partial functions on {1,2,...,n} that are endofunctions. See comments in A000169 and A126285 by Franklin T. Adams-Watters. - Geoffrey Critzer, Dec 19 2011

Examples

			a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*k^k, k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 30 2021
  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[x]/(1-t),{x,0,nn}],x]  (* Geoffrey Critzer, Dec 19 2011 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n, k)*k^k ); \\ Joerg Arndt, May 10 2013
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*k^k.
a(n) ~ e^(1/e)*n^n * (1 + 1/(2*e*n)) ~ 1.444667861... * n^n. - Vaclav Kotesovec, Nov 27 2012
G.f.: Sum_{k>=0} (k * x)^k/(1 - x)^(k+1). - Seiichi Manyama, Jul 04 2022

A323280 a(n) = Sum_{k=0..n} binomial(n,k) * k^(2*k).

Original entry on oeis.org

1, 2, 19, 781, 68553, 10100761, 2236373953, 693667946945, 286962262702657, 152652510206521921, 101513694573289791441, 82511051259976074269425, 80480313356721971865934369, 92773167329045961244649105633, 124768226258051318899374299271601
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[Binomial[n, k]*k^(2*k), {k, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 31 2019 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*k^(2*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k^2*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022

Formula

a(n) ~ n^(2*n). - Vaclav Kotesovec, May 31 2019
From Seiichi Manyama, Jul 04 2022: (Start)
G.f.: Sum_{k>=0} (k^2 * x)^k/(1 - x)^(k+1).
E.g.f.: exp(x) * Sum_{k>=0} (k^2 * x)^k/k!. (End)

A277454 a(n) = 1 + Sum_{k=1..n} binomial(n,k) * 2^k * k^k.

Original entry on oeis.org

1, 3, 21, 271, 5065, 122811, 3651997, 128566663, 5227782161, 241072839667, 12430169195941, 708612945554559, 44253858433505497, 3004570398043291819, 220341964157226260525, 17357760973540312138231, 1461813975265547356467745, 131061164660246579394042339
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1+Sum[Binomial[n, k]*2^k*k^k, {k, 1, n}], {n, 0, 20}]
    CoefficientList[Series[E^x/(1+LambertW[-2*x]), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)*(2*k)^k)} \\ Seiichi Manyama, Jan 12 2019

Formula

E.g.f.: exp(x)/(1+LambertW(-2*x)).
a(n) ~ exp(exp(-1)/2) * 2^n * n^n.

A277457 E.g.f.: exp(2*x)/(1+LambertW(-x)).

Original entry on oeis.org

1, 3, 12, 71, 616, 7197, 105052, 1829291, 36922928, 846851993, 21744781684, 617832652527, 19242299657896, 651815827343189, 23857403245171724, 938247816632341043, 39455261828928309088, 1766645684585351990961, 83913998998426051745764, 4214295288128637488870327, 223120214856875472660345176
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[2*x]/(1+LambertW[-x]), {x, 0, 20}], x]*Range[0, 20]!
    Table[1 + Sum[Binomial[n, m]*(1 + Sum[Binomial[m, k]*k^k, {k, 1, m}]), {m, 1, n}], {n, 0, 20}]
    Table[2^n + Sum[Binomial[n, k]*2^(n-k)*k^k, {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2016 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(2*x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) ~ exp(2*exp(-1)) * n^n.

A356827 Expansion of e.g.f. exp(x * exp(3*x)).

Original entry on oeis.org

1, 1, 7, 46, 361, 3436, 37729, 463366, 6280369, 93015352, 1491337441, 25684077706, 472217487625, 9221588527204, 190441412508481, 4143470377262806, 94663498086222049, 2264440394856702832, 56570146384760433217, 1472545685988162638722
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • Maple
    A356827 := proc(n)
        add((3*k)^(n-k) * binomial(n,k),k=0..n) ;
    end proc:
    seq(A356827(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(3*x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-3*k*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (3*k)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k / (1 - 3*k*x)^(k+1).
a(n) = Sum_{k=0..n} (3*k)^(n-k) * binomial(n,k).
Showing 1-5 of 5 results.