A074200 a(n) = m, the smallest number such that (m+k)/k is prime for k=1, 2, ..., n.
1, 2, 12, 12720, 19440, 5516280, 5516280, 7321991040, 363500177040, 2394196081200, 3163427380990800, 22755817971366480, 3788978012188649280, 2918756139031688155200
Offset: 1
Examples
(12+k)/k is prime for k = 1,2,3. 12 is the smallest such number so a(3) = 12.
Links
- Walter Nissen, Calculation without Words : Doric Columns of Primes.
- C. Rivera, Puzzle 181
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = For[dm = LCM @@ Range[n]; m = Quotient[a[n - 1], dm]*dm, True, m = m + dm, If[AllTrue[Range[n], PrimeQ[(m + #)/#] &], Return[m]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Dec 01 2016 *)
-
PARI
isok(m, n) = {for (k = 1, n, if ((m+k) % k, return (0), if (! isprime((m+k)/k), return(0)));); return (1);} a(n) = {m = 1; while(! isok(m, n), m++); m;} \\ Michel Marcus, Aug 31 2013
-
Python
from sympy import isprime, lcm def A074200(n): a = lcm(range(1,n+1)) m = a while True: for k in range(n,0,-1): if not isprime(m//k+1): break else: return m m += a # Chai Wah Wu, Feb 27 2019
Extensions
Corrected by Vladeta Jovovic, Jan 08 2003
a(14) from Jens Kruse Andersen, Feb 15 2004
Comments