cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074200 a(n) = m, the smallest number such that (m+k)/k is prime for k=1, 2, ..., n.

Original entry on oeis.org

1, 2, 12, 12720, 19440, 5516280, 5516280, 7321991040, 363500177040, 2394196081200, 3163427380990800, 22755817971366480, 3788978012188649280, 2918756139031688155200
Offset: 1

Views

Author

Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Sep 17 2002, May 10 2010

Keywords

Comments

Computed by Jack Brennen and Phil Carmody.

Examples

			(12+k)/k is prime for k = 1,2,3. 12 is the smallest such number so a(3) = 12.
		

Crossrefs

One less than A093553.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = For[dm = LCM @@ Range[n]; m = Quotient[a[n - 1], dm]*dm, True, m = m + dm, If[AllTrue[Range[n], PrimeQ[(m + #)/#] &], Return[m]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Dec 01 2016 *)
  • PARI
    isok(m, n) = {for (k = 1, n, if ((m+k) % k, return (0), if (! isprime((m+k)/k), return(0)));); return (1);}
    a(n) = {m = 1; while(! isok(m, n), m++); m;} \\ Michel Marcus, Aug 31 2013
    
  • Python
    from sympy import isprime, lcm
    def A074200(n):
        a = lcm(range(1,n+1))
        m = a
        while True:
            for k in range(n,0,-1):
                if not isprime(m//k+1):
                    break
            else:
                return m
            m += a # Chai Wah Wu, Feb 27 2019

Extensions

Corrected by Vladeta Jovovic, Jan 08 2003
a(14) from Jens Kruse Andersen, Feb 15 2004

A278583 Numbers k such that k+1 is a prime, k+2 is twice a prime, and k+3 is three times a prime.

Original entry on oeis.org

12, 36, 156, 540, 876, 1200, 1380, 1620, 2016, 2556, 2856, 3060, 4356, 4440, 5076, 5580, 5700, 6336, 6636, 6660, 6996, 7416, 8220, 9180, 9660, 9900, 10836, 11496, 12456, 12600, 12720, 12756, 13680, 14436, 15240, 16920, 17076, 18216, 18300, 18396, 19440, 21000, 21576, 22620, 23556, 24480
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2016

Keywords

Comments

All terms are divisible by 12. - Daniel Poveda Parrilla, Dec 12 2016

References

  • R. K. Guy, Posting to Number Theory Mailing List, Nov 30 2016

Crossrefs

Equals A036570(n) - 1.
Positions of terms >= 3 in A278500.
Cf. A074200.

Programs

  • Mathematica
    Select[Range[12,25000,12],AllTrue[{#+1,(#+2)/2,(#+3)/3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 26 2020 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim+1, if(p%6==1 && isprime(p\2+1) && isprime(p\3+1), listput(v,p-1))); Vec(v) \\ Charles R Greathouse IV, Dec 03 2016

A278585 Numbers k such that k+1 is a prime, k+2 is twice a prime, k+3 is three times a prime, and k+4 is four times a prime.

Original entry on oeis.org

12720, 16920, 19440, 24480, 49680, 61560, 104160, 229320, 255360, 259680, 266400, 291720, 298200, 311040, 331920, 419400, 423480, 436800, 446880, 471240, 525240, 532800, 539400, 581520, 600600, 663600, 704160, 709920, 783720, 867000, 904800, 908040, 918360
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2016

Keywords

Comments

a(n) == 0 mod 120 (see comment in A163573). - Chai Wah Wu, Nov 30 2016

Crossrefs

Equals A163573(n) - 1.
Positions of terms >= 4 in A278500, thus a subsequence of A278583, A089965 and A006093.

Programs

  • Mathematica
    Select[Range[920000],AllTrue[{#+1,(#+2)/2,(#+3)/3,(#+4)/4},PrimeQ]&] (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    is(k)=k%120==0 && isprime(k+1) && isprime(k/2+1) && isprime(k/3+1) && isprime(k/4+1) \\ Charles R Greathouse IV, Dec 03 2016
  • Python
    from sympy import prime, isprime
    A278585_list = [4*q-4 for q in (prime(i) for i in range(1,10000)) if isprime(4*q-3) and isprime(2*q-1) and (not (4*q-1) % 3) and isprime((4*q-1)//3)] # Chai Wah Wu, Nov 30 2016
    
Showing 1-3 of 3 results.