cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A036570 Primes p such that (p+1)/2 and (p+2)/3 are also primes.

Original entry on oeis.org

13, 37, 157, 541, 877, 1201, 1381, 1621, 2017, 2557, 2857, 3061, 4357, 4441, 5077, 5581, 5701, 6337, 6637, 6661, 6997, 7417, 8221, 9181, 9661, 9901, 10837, 11497, 12457, 12601, 12721, 12757, 13681, 14437, 15241, 16921, 17077, 18217
Offset: 1

Views

Author

Keywords

Comments

The prime p is followed by two semiprimes; a third semiprime is not possible. - T. D. Noe, Jul 23 2008
A subsequence of A005383, which has A163573 as a subsequence. - M. F. Hasler, Feb 26 2012
Similarly, the only "prime sandwiched by semiprimes" is 5. - Zak Seidov, Aug 04 2013
For n > 1, a(n) == 1 or (7 mod 10). If a(n) == 3 (mod 10), then (a(n) + 2)/3 == 0 (mod 5) which is a composite number if a(n) > 13. - Chai Wah Wu, Nov 30 2016
All terms are congruent to 1 (mod 12). - Zak Seidov, Feb 16 2017

Crossrefs

A278583 is an equivalent sequence.
See also A278585.

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p+1)/2]&&PrimeQ[(p+2)/3],AppendTo[lst,p]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 31 2009 *)
  • PARI
    is_A036570(n)={ !(n%3-1) & isprime(n\3+1) & isprime(n\2+1) & isprime(n) }
    for(n=1,2e4,is_A036570(n) & print1(n","))  \\ M. F. Hasler, Feb 26 2012

A278583 Numbers k such that k+1 is a prime, k+2 is twice a prime, and k+3 is three times a prime.

Original entry on oeis.org

12, 36, 156, 540, 876, 1200, 1380, 1620, 2016, 2556, 2856, 3060, 4356, 4440, 5076, 5580, 5700, 6336, 6636, 6660, 6996, 7416, 8220, 9180, 9660, 9900, 10836, 11496, 12456, 12600, 12720, 12756, 13680, 14436, 15240, 16920, 17076, 18216, 18300, 18396, 19440, 21000, 21576, 22620, 23556, 24480
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2016

Keywords

Comments

All terms are divisible by 12. - Daniel Poveda Parrilla, Dec 12 2016

References

  • R. K. Guy, Posting to Number Theory Mailing List, Nov 30 2016

Crossrefs

Equals A036570(n) - 1.
Positions of terms >= 3 in A278500.
Cf. A074200.

Programs

  • Mathematica
    Select[Range[12,25000,12],AllTrue[{#+1,(#+2)/2,(#+3)/3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 26 2020 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim+1, if(p%6==1 && isprime(p\2+1) && isprime(p\3+1), listput(v,p-1))); Vec(v) \\ Charles R Greathouse IV, Dec 03 2016

A093553 a(n) is the smallest number m such that (m+k-1)/k is prime for k=1,2,...,n.

Original entry on oeis.org

2, 3, 13, 12721, 19441, 5516281, 5516281, 7321991041, 363500177041, 2394196081201, 3163427380990801, 22755817971366481, 3788978012188649281, 2918756139031688155201
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 14 2004

Keywords

Comments

This sequence is A074200(n) + 1. See that entry for more information. - N. J. A. Sloane, May 04 2009
It is obvious that this sequence is increasing and each term is prime. If n > 3 then a(n) == 1 (mod 10).
From Jean-Christophe Hervé, Sep 14 2014: (Start)
a(n) == 1 (mod 120) for all n > 3 (see A163573).
a(4) = 12721 is a quite remarkable number: it is a palindromic prime, its 5 (prime) digits sum to 13, still a prime number (and the preceding element in this sequence, among other things), and as the fourth element of this sequence, it is the smallest prime such that (p-1)/2, (p-2)/3 and (p-3)/4 are also prime, and many other properties. (End)

Examples

			a(9)=363500177041 because all the nine numbers 363500177041,
(363500177041+1)/2, (363500177041+2)/3, (363500177041+3)/4,
(363500177041+4)/5, (363500177041+5)/6, (363500177041+6)/7,
(363500177041+7)/8 and (363500177041+8)/9 are primes and
363500177041 is the smallest number m such that (m+k-1)/k is prime for k=1,2,...,9.
		

Crossrefs

Cf. A072875.

A278500 a(n) = largest k such that n+1 = a prime, n+2 = 2 * a prime, ..., n+k is k times a prime, a(n) = 0 if n+1 is not a prime.

Original entry on oeis.org

1, 2, 0, 2, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2016

Keywords

Comments

First 4 occurs at n=12720, first 5 occurs at n=19440. See A074200.

Examples

			a(12) = 3 as 13 = 1*prime, 14 = 2*prime, 15 = 3*prime.
		

Crossrefs

Cf. A072668 (positions of zeros), A006093 (nonzeros), A089965 (positions of terms >= 2), A278583 (of terms >= 3), A278585 (of terms >= 4).
Cf. A074200 (position of the first term >= n).

Programs

  • Mathematica
    Table[If[CompositeQ[n + 1], 0, k = 1; While[Times @@ Boole@ Map[PrimeQ, MapIndexed[#1/First@ #2 &, (n + Range@ k)]] == 1, k++]; k - 1], {n, 120}] (* Michael De Vlieger, Dec 01 2016 *)
  • PARI
    A278500(n) = { my(k=1); while((!((n+k)%k) && isprime((n+k)/k)), k = k+1); (k-1); }
    for(n=1, 2^20, write("b278500.txt", n, " ", A278500(n)));
    
  • Scheme
    (define (A278500 n) (let loop ((k 1)) (let ((h (/ (+ n k) k))) (if (or (not (integer? h)) (zero? (A010051 h))) (- k 1) (loop (+ 1 k))))))

A278585 Numbers k such that k+1 is a prime, k+2 is twice a prime, k+3 is three times a prime, and k+4 is four times a prime.

Original entry on oeis.org

12720, 16920, 19440, 24480, 49680, 61560, 104160, 229320, 255360, 259680, 266400, 291720, 298200, 311040, 331920, 419400, 423480, 436800, 446880, 471240, 525240, 532800, 539400, 581520, 600600, 663600, 704160, 709920, 783720, 867000, 904800, 908040, 918360
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2016

Keywords

Comments

a(n) == 0 mod 120 (see comment in A163573). - Chai Wah Wu, Nov 30 2016

Crossrefs

Equals A163573(n) - 1.
Positions of terms >= 4 in A278500, thus a subsequence of A278583, A089965 and A006093.

Programs

  • Mathematica
    Select[Range[920000],AllTrue[{#+1,(#+2)/2,(#+3)/3,(#+4)/4},PrimeQ]&] (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    is(k)=k%120==0 && isprime(k+1) && isprime(k/2+1) && isprime(k/3+1) && isprime(k/4+1) \\ Charles R Greathouse IV, Dec 03 2016
  • Python
    from sympy import prime, isprime
    A278585_list = [4*q-4 for q in (prime(i) for i in range(1,10000)) if isprime(4*q-3) and isprime(2*q-1) and (not (4*q-1) % 3) and isprime((4*q-1)//3)] # Chai Wah Wu, Nov 30 2016
    

A078502 a(n) = smallest positive integer N such that (N - k)/k is prime for k = 1, 2, ..., n.

Original entry on oeis.org

3, 6, 12, 12, 174600, 7224840, 10780560, 10780560, 1086338816640, 50060257410240, 7720634052774720, 227457297898150320, 7272877497848202240, 7272877497848202240
Offset: 1

Views

Author

Joseph L. Pe, Jan 05 2003

Keywords

Comments

The idea for the sequence and first eleven terms are from Ken Wilke.
a(n) == 0 (mod 120) for n > 4: because a(n)/2, a(n)/3, a(n)/4 and a(n)/5 must be integer, a(n) == 0 (mod 60); and if a(n) == 60 (mod 120), (a(n)-4)/4 == 14 (mod 120) would not be prime; thus a(n) == 0 (mod 120). A more general result is a(n) == 0 (mod lcm(1,2,...,n)) for all n >= 1, and a(n) == 0 (mod 2*lcm(1,2,...,n)) for n > 4. - Jean-Christophe Hervé, Sep 15 2014

Examples

			(12-k)/k is prime for k = 1,2,3,4 and 12 is the smallest positive integer satisfying this property. Hence a(4) = 12.
		

Crossrefs

See A093554 for another version.
Cf. A074200 (equivalent sequence for (N+k)/k prime).

Programs

  • PARI
    a(n)=k=1; while(k,c=0; for(i=1,n,if(k%i==0&&isprime(k/i-1),c++)); if(c==n,return(k));k++)
    n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Sep 15 2014

Formula

a(n) == 0 (mod A003418(n)) because of the divisibility condition (A003418(n) = lcm(1,2,...,n)). - Jean-Christophe Hervé, Sep 15 2014

Extensions

Corrected and extended by Jens Kruse Andersen, Jan 10 2003
Showing 1-6 of 6 results.