cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A280953 Expansion of Product_{k>=0} 1/(1 - x^(3*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 22, 23, 24, 25, 25, 27, 27, 29, 30, 31, 32, 32, 34, 34, 36, 37, 38, 39, 40, 43, 44, 46, 47, 48, 50, 51, 54, 55, 57, 58, 59
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered hexagonal numbers (A003215).

Examples

			a(14) = 3 because we have [7, 7], [7, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(3*t*(t+1)+1>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(3*i*(i+1)+1)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 86; CoefficientList[Series[Product[1/(1 - x^(3 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(3*k*(k+1)+1)).

A322798 Number of compositions (ordered partitions) of n into hexagonal numbers (A000384).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 22, 29, 37, 47, 60, 77, 101, 133, 174, 226, 292, 376, 486, 632, 823, 1072, 1394, 1808, 2342, 3036, 3939, 5116, 6648, 8636, 11211, 14548, 18875, 24493, 31795, 41283, 53604, 69594, 90338, 117251, 152184, 197540
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(2*t-1)>n, t-1, t))(1+h(n-1)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i*(2*i-1)), i=1..h(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k (2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(2*k-1))).

A279012 Expansion of Product_{k>=1} 1/(1 - x^(k*(5*k-3)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 11, 11, 11, 12, 12, 13, 14, 15, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25, 26, 26, 27, 28, 29, 31, 32, 33, 33, 34, 35, 37, 39, 41, 42, 43, 45, 46, 48, 50, 52, 53, 54, 56, 58, 60, 62, 64, 65, 67, 69, 72, 75, 78
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2016

Keywords

Comments

Number of partitions of n into nonzero heptagonal numbers (A000566).

Examples

			a(8) = 2 because we have [7, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(5*t-3)/2>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(5*i-3)/2)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (5 k - 3)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(5*k-3)/2)).

A279279 Expansion of Product_{k>=1} (1 + x^(k*(2*k-1))).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct hexagonal numbers (A000384).

Examples

			a(67) = 2 because we have [66, 1] and [45, 15, 6, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Product[1 + x^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(2*k-1))).

A279041 Expansion of Product_{k>=1} 1/(1 - x^(k*(3*k-2))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 10, 10, 11, 11, 11, 12, 12, 12, 14, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 19, 21, 21, 22, 24, 25, 26, 26, 26, 28, 28, 29, 31, 32, 33, 33, 33, 35, 35, 36, 39, 40, 42, 42, 43, 45, 46, 47, 50, 51, 53
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2016

Keywords

Comments

Number of partitions of n into nonzero octagonal numbers (A000567).

Examples

			a(9) = 2 because we have [8, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(3*t-2)>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(3*i-2))))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (3 k - 2))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(3*k-2))).

A332014 Number of compositions (ordered partitions) of n into distinct hexagonal numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 2, 6, 1, 2, 0, 0, 6, 24, 2, 6, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 7, 26, 0, 0, 0, 0, 2, 8, 6, 0, 0, 0, 0, 6, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(22) = 6 because we have [15, 6, 1], [15, 1, 6], [6, 15, 1], [6, 1, 15], [1, 15, 6] and [1, 6, 15].
		

Crossrefs

Showing 1-6 of 6 results.