cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A279220 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k+1)/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 9, 9, 9, 10, 11, 13, 13, 13, 14, 15, 17, 17, 17, 18, 19, 21, 21, 22, 23, 25, 27, 27, 28, 29, 31, 33, 33, 34, 35, 37, 40, 41, 42, 44, 46, 50, 51, 52, 54, 56, 60, 61, 62, 64, 67, 72, 73, 75, 77, 81, 86, 87, 89, 91, 95, 100, 101, 103, 106, 111, 117, 119, 121, 125, 130, 137
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero square pyramidal numbers (A000330).

Examples

			a(6) = 2 because we have [5, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(t+1)*(2*t+1)/6>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(i+1)*(2*i+1)/6)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (2 k + 1)/6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k+1)/6)).

A279221 Expansion of Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 12, 12, 12, 12, 13, 13, 16, 16, 16, 16, 17, 17, 20, 20, 20, 20, 21, 21, 25, 25, 25, 25, 27, 27, 31, 31, 31, 31, 33, 33, 37, 37, 37, 37, 39, 39, 44, 44, 44, 45, 48, 48, 53, 53, 54, 55, 58, 58, 63, 63, 64, 65, 68, 68, 74
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero pentagonal pyramidal numbers (A002411).

Examples

			a(7) = 2 because we have [6, 1] and [1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k^2 (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)).

A279222 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 13, 15, 16, 16, 16, 16, 16, 17, 19, 20, 20, 20, 20, 20, 21, 23, 24, 25, 25, 25, 25, 26, 28, 30, 31, 31, 31, 31, 32, 34, 36, 37, 37, 37, 37, 38, 40, 42, 43, 44, 44, 44
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero hexagonal pyramidal numbers (A002412).

Examples

			a(8) = 2 because we have [7, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (4 k - 1)/6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)).

A279224 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k-1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23, 24, 24, 26, 26, 26, 27, 27, 27, 28, 29, 29, 31, 32
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero octagonal pyramidal numbers (A002414).

Examples

			a(10) = 2 because we have [9, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (2 k - 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k-1)/2)).

A322855 Number of compositions (ordered partitions) of n into heptagonal pyramidal numbers (A002413).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 97, 121, 151, 188, 233, 287, 352, 431, 530, 654, 809, 1002, 1241, 1535, 1895, 2335, 2876, 3544, 4371, 5396, 6666, 8237, 10176, 12564, 15504, 19126, 23594, 29111, 35928
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(5*k-2)/6)).
Showing 1-5 of 5 results.