cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A362957 a(n) is the least prime p such that the number of distinct prime factors of p^n + 1 sets a new record.

Original entry on oeis.org

2, 3, 5, 43, 17, 47, 151, 1697, 59, 2153, 521, 13183, 30089, 20753, 3769
Offset: 1

Views

Author

Hugo Pfoertner, Jun 11 2023

Keywords

Comments

a(16) > 2.3*10^6; to see if there has been any progress see also A280005(16).

Crossrefs

Programs

  • PARI
    smallf(q,nmax) = {my(qq=q,j=0); forprime (p=2, nmax, my(k=0); while (qq%p==0, k++; qq/=p); if (k>0, j++;)); [j,qq]};
    a362957(upto) = {my(nfmax=0); for (n=1, upto, forprime (p=2, oo, my(f=p^n+1, s=smallf(f,p)); if (s[1]nfmax, print1(p,", "); nfmax=nf; break)))};
    a362957(12)

A281940 Least k such that k^n + 1 is the product of n distinct primes (k > 0).

Original entry on oeis.org

1, 3, 9, 43, 46, 47, 245, 1697, 109, 565, 3938, 3255, 30089, 18951, 2217
Offset: 1

Views

Author

Altug Alkan, Feb 24 2017

Keywords

Comments

Corresponding values of k^n + 1 are 2, 10, 730, 3418802, 205962977, 10779215330, ...

Examples

			a(3) = 9 because 9^3 + 1 = 2 * 5 * 73 and 9 is the least number with this property.
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (!issquarefree(k^n+1) || omega(k^n+1) != n, k++); k;

Extensions

a(14)-a(15) from Giovanni Resta, Mar 10 2017

A358656 Least prime p such that p^n + 2 is the product of n distinct primes.

Original entry on oeis.org

3, 2, 7, 71, 241, 83, 157, 6947, 4231, 35509, 15541, 199499, 649147
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Nov 27 2022

Keywords

Comments

Corresponding values of p^n + 2 are 5, 6, 345, 25411683, 812990017203, 326940373371, 2351243277537495, ...

Examples

			a(1) = 3; 3^1 + 2 = 5.
a(2) = 2; 2^2 + 2 = 2 * 3.
a(3) = 7; 7^3 + 2 = 3 * 5 * 23.
a(4) = 71; 71^4 + 2 = 3 * 11 * 19 * 40529.
		

Crossrefs

Programs

  • Mathematica
    Table[b=2;y[a_]:=FactorInteger[Prime[a]^n+b];k=1;Monitor[Parallelize[While[True,If[And[Length[y[k]]==n,Count[Flatten[y[k]],1]==n],Break[]];k++];k],k]//Prime,{n,1,10}]
  • PARI
    a(n) = forprime(p=2, , my(f=factor(p^n + 2)); if (issquarefree(f) && (omega(f) == n), return(p))); \\ Michel Marcus, Nov 29 2022

Extensions

a(13) from Daniel Suteu, Dec 09 2022

A359069 Smallest prime p such that p^(2n-1) - 1 is the product of 2n-1 distinct primes.

Original entry on oeis.org

3, 59, 47, 79, 347, 6343, 56711, 4523
Offset: 1

Views

Author

Kevin P. Thompson, Dec 15 2022

Keywords

Comments

a(9) > 113500.
a(9) > 1000000, a(10) > 237000, a(11) > 209021. - Sean A. Irvine, Jan 10 2023
a(n)-1 is squarefree for all n. - Chai Wah Wu, Jan 30 2023

Examples

			a(3) = 47 since 47^(2*3-1) - 1 = 229345006 = 2*11*23*31*14621 is the product of 5 distinct primes and 47 is the smallest prime number with this property.
		

Crossrefs

Programs

  • PARI
    isok(p, n) = my(f=factor(p^(2*n-1)-1)); issquarefree(f) && (omega(f) == 2*n-1);
    a(n) = my(p=2); while (!isok(p, n), p=nextprime(p+1)); p; \\ Michel Marcus, Dec 15 2022

A358979 Least prime p such that p^n + 4 is the product of n distinct primes.

Original entry on oeis.org

3, 19, 11, 29, 131, 631, 983, 353, 9941, 20089, 15031, 8387, 102931
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Dec 27 2022

Keywords

Comments

Corresponding values of p^n + 4 are 7, 365, 707285, 38579489655, 63121332085847285, 886899938586555644331, 241100240228887100165, ...
If they exist, a(14) > 106123, a(15) > 41257, a(16) > 31567.

Examples

			a(1) = 3; 3^1 + 4 = 7.
a(2) = 19; 19^2 + 4 = 5 * 73.
a(3) = 11; 11^3 + 4 = 3 * 5 * 89.
a(4) = 29; 29^4 + 4 = 5 * 17 * 53 * 157.
		

Crossrefs

Programs

  • Mathematica
    Table[b=4;y[a_]:=FactorInteger[Prime[a]^n+b];k=1;Monitor[Parallelize[While[True,If[And[Length[y[k]]==n,Count[Flatten[y[k]],1]==n],Break[]];k++];k],k]//Prime,{n,1,10}]
  • PARI
    a(n) = forprime(p=2, , my(f=factor(p^n + 4)); if (issquarefree(f) && (omega(f) == n), return(p)));

A363585 Least prime p such that p^n + 6 is the product of n distinct primes.

Original entry on oeis.org

5, 2, 23, 127, 71, 353, 1279, 3851, 3049, 18913, 47129, 352073, 696809
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Jun 10 2023

Keywords

Comments

Corresponding values of p^n + 6 are 11, 10, 12173, 260144647, 1804229357, 1934854145598535, 5598785270206921122565, ...
Upper bounds for the next terms are a(12) <= 352073, a(13) <= 696809, a(14) <= 1496423. - Hugo Pfoertner, Jun 11 2023

Examples

			a(1) = 5; 5^1 + 6 = 11.
a(2) = 2; 2^2 + 6 = 2 * 5.
a(3) = 23; 23^3 + 6 = 7 * 37 * 47.
a(4) = 127; 127^4 + 6 = 7 * 131 * 367 * 773.
		

Crossrefs

Programs

  • Mathematica
    Table[b=6;y[a_]:=FactorInteger[Prime[a]^n+b];k=1;Monitor[Parallelize[While[True,If[And[Length[y[k]]==n,Count[Flatten[y[k]],1]==n],Break[]];k++];k],k]//Prime,{n,1,10}]
  • PARI
    a(n) = forprime(p=2, , my(f=factor(p^n + 6)); if (issquarefree(f) && (omega(f) == n), return(p)));

Extensions

a(11) from Hugo Pfoertner, Jun 11 2023
a(12) from J.W.L. (Jan) Eerland, Jan 07 2024
a(13) from Hugo Pfoertner, confirmed by Daniel Suteu, Feb 10 2024

A368162 a(n) is the smallest number k > 0 such that bigomega(k^n + 1) = n.

Original entry on oeis.org

1, 3, 3, 43, 7, 32, 23, 643, 17, 207, 251, 3255, 255, 1568, 107
Offset: 1

Views

Author

Daniel Suteu, Dec 14 2023

Keywords

Comments

a(16) <= 206874667; a(17) = 4095; a(18) = 6272; a(21) = 1151.

Examples

			a(5) = 7 is the smallest number of the set {k(i)} = {7, 14, 24, 26, 46, 51, ...} where k(i)^5 + 1 has exactly 5 prime factors counted with multiplicity.
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (bigomega(k^n+1) != n, k++); k;

A379768 a(n) is the smallest prime p such that omega(p^n + 1) = n.

Original entry on oeis.org

2, 3, 5, 43, 17, 47, 151, 1697, 59, 2153, 521, 13183, 30089, 66569, 761
Offset: 1

Views

Author

Daniel Suteu, Jan 06 2025

Keywords

Comments

2*10^6 < a(16) <= 206874667; a(18) = 33577; a(20) <= 3258569.
A219018(n) <= a(n) <= A280005(n).

Examples

			a(3) = 5 is the smallest prime of the set {p(i)} = {5, 11, 13, 19, 23, ...} where omega(p(i)^3 + 1) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = 2}, While[PrimeNu[p^n + 1] != n, p = NextPrime[p]]; p]; Print[Array[a, 11]]
  • PARI
    a(n) = forprime(p=2, oo, if(omega(p^n+1) == n, return(p)));
Showing 1-8 of 8 results.