A226960
Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 2 (mod n).
Original entry on oeis.org
1, 4, 12, 84, 3612
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1), this sequence (m=2),
A226961 (m=3),
A226962 (m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 2 &]
-
is(n)=if(n%2,return(n==1)); Mod(sumdiv(n/2,d, if(isprime(2*d+1), n/(2*d+1)))+n/2,n)==-2 \\ Charles R Greathouse IV, Nov 13 2013
A226961
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 3 (mod n).
Original entry on oeis.org
1, 2, 3, 18, 126, 5418
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2), this sequence (m=3),
A226962 (m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 3 &]
-
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-3 \\ Charles R Greathouse IV, Nov 13 2013
A226963
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 5 (mod n).
Original entry on oeis.org
1, 2, 5, 10, 30, 210, 9030, 235290, 11072512110
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962 (m=4), this sequence (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 5 &]
-
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-5 \\ Charles R Greathouse IV, Nov 13 2013
Terms 1,2,5 prepended and a(9) added by
Max Alekseyev, Aug 26 2013
A226967
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 9 (mod n).
Original entry on oeis.org
1, 2, 3, 9, 54, 378, 16254
Offset: 1
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962(m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8), this sequence (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == Mod[9,#] &]
-
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-9 \\ Charles R Greathouse IV, Nov 13 2013
A226962
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 4 (mod n).
Original entry on oeis.org
1, 8, 24, 168, 7224
Offset: 1
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3), this sequence (m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 4 &]
-
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-4 \\ Charles R Greathouse IV, Nov 13 2013
A226964
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 6 (mod n).
Original entry on oeis.org
1, 3, 4, 20, 36, 252, 10836
Offset: 1
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962 (m=4),
A226963 (m=5), this sequence (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 6 &]
-
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-6 \\ Charles R Greathouse IV, Nov 13 2013
A226965
Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 7 (mod n).
Original entry on oeis.org
1, 2, 6, 7, 14, 294, 12642
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962(m=4),
A226963 (m=5),
A226964 (m=6), this sequence (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 7&]
-
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-7 \\ Charles R Greathouse IV, Nov 13 2013
Corrected and keywords full,fini added by
Max Alekseyev, Aug 25 2013
A226966
Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 8 (mod n).
Original entry on oeis.org
1, 16, 48, 336, 14448
Offset: 1
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962(m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7), this sequence (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79),
A302344 (m=193).
-
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 8 &]
-
is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-8 \\ Charles R Greathouse IV, Nov 13 2013
A302343
Solutions to the congruence 1^n + 2^n + ... + n^n == 79 (mod n).
Original entry on oeis.org
1, 2, 6, 79, 158, 474, 3318, 142674
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962 (m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43), this sequence (m=79),
A302344 (m=193).
A302344
Solutions to the congruence 1^n + 2^n + ... + n^n == 193 (mod n).
Original entry on oeis.org
1, 2, 6, 193, 386, 1158, 8106, 348558
Offset: 1
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
Solutions to 1^n+2^n+...+n^n == m (mod n):
A005408 (m=0),
A014117 (m=1),
A226960 (m=2),
A226961 (m=3),
A226962 (m=4),
A226963 (m=5),
A226964 (m=6),
A226965 (m=7),
A226966 (m=8),
A226967 (m=9),
A280041 (m=19),
A280043 (m=43),
A302343 (m=79), this sequence (m=193).
Showing 1-10 of 11 results.
Comments