cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A298642 Number of partitions of n^2 into distinct squares > 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 5, 2, 10, 4, 12, 12, 11, 19, 23, 43, 50, 55, 78, 120, 126, 234, 207, 407, 385, 701, 712, 1090, 1231, 1850, 2102, 3054, 3385, 4988, 5584, 7985, 9746, 12205, 15737, 18968, 25157, 30927, 39043, 47708, 61915, 74592, 99554
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2018

Keywords

Examples

			a(5) = 2 because we have [25] and [16, 9].
		

Crossrefs

Formula

a(n) = [x^(n^2)] Product_{k>=2} (1 + x^(k^2)).
a(n) = A280129(A000290(n)).

A331884 Number of compositions (ordered partitions) of n^2 into distinct squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 7, 1, 31, 123, 151, 121, 897, 7351, 5415, 14881, 48705, 150583, 468973, 1013163, 1432471, 1730023, 50432107, 14925241, 125269841, 74592537, 241763479, 213156871, 895153173, 7716880623, 2681163865, 3190865761, 22501985413, 116279718801
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2020

Keywords

Examples

			a(5) = 3 because we have [25], [16, 9] and [9, 16].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)*(2*i+1)/6n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))
        end:
    a:= n-> b(n^2, n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];
    a[n_] := b[n^2, n, 0];
    a /@ Range[0, 35] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)

Formula

a(n) = A331844(A000290(n)).

Extensions

a(24)-a(34) from Alois P. Heinz, Jan 30 2020

A303907 Expansion of Product_{k>=2} (1 + x^(k*(k+1)/2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0, 2, 1, 0, 1, 2, 0, 1, 3, 0, 0, 3, 0, 2, 2, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 0, 2, 4, 1, 2, 5, 1, 2, 3, 2, 3, 3, 2, 2, 5, 2, 4, 4, 2, 3, 6, 1, 3, 6, 3, 3, 7, 2, 2, 7, 3, 5, 6, 5, 4, 6, 4, 5, 5, 5, 4, 10, 4, 3, 11, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

Number of partitions of n into distinct triangular numbers > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 95; CoefficientList[Series[Product[1 + x^(k (k + 1)/2), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*A024940(k).
a(n) ~ exp(3*Pi^(1/3) * ((sqrt(2)-1)*Zeta(3/2))^(2/3) * n^(1/3) / 2^(4/3)) * ((sqrt(2)-1)*Zeta(3/2))^(1/3) / (2^(8/3) * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, May 04 2018

A298600 Expansion of Product_{k>=2} 1/(1 + x^(k^2)).

Original entry on oeis.org

1, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 0, -2, 2, -1, 1, 2, -2, 1, -1, -2, 3, -2, 1, 2, -3, 2, -1, -1, 2, -3, 1, 1, -2, 3, 0, 0, 2, -3, 1, -1, -2, 3, -1, -2, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Comments

The difference between the number of partitions of n into an even number of squares > 1 and the number of partitions of n into an odd number of squares > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 82; CoefficientList[Series[Product[1/(1 + x^k^2), {k, 2, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} 1/(1 + x^(k^2)).

A298601 Expansion of Product_{k>=2} (1 - x^(k^2)).

Original entry on oeis.org

1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -2, -1, 0, 1, 1, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0, 1, 1, 0, 0, -2, 0, 0, 1, 0, 0, -1, -1, 2, 1, 1, 0, -1, -1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Comments

The difference between the number of partitions of n into an even number of distinct squares > 1 and the number of partitions of n into an odd number of distinct squares > 1.
Partial sums of A276516.

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Product[1 - x^k^2, {k, 2, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 - x^(k^2)).

A331983 Number of compositions (ordered partitions) of n into distinct squares > 1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 8, 0, 0, 0, 0, 2, 0, 1, 0, 6, 0, 2, 2, 0, 0, 0, 8, 0, 0, 0, 7, 6, 0, 2, 2, 24, 0, 6, 0, 2, 0, 0, 8, 6, 0, 1, 32, 0, 0, 2, 6, 6, 0, 0, 2, 32, 0, 0, 12, 30, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Examples

			a(25) = 3 because we have [25], [16, 9] and [9, 16].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(n=0, p!, `if`(i*(i+1)*(2*i+1)/6-1n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))
        end:
    a:= n-> b(n, isqrt(n), 0):
    seq(a(n), n=0..87);  # Alois P. Heinz, Feb 03 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i(i+1)(2i+1)/6 - 1 < n, 0, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];
    a[n_] := b[n, Floor@Sqrt[n], 0];
    a /@ Range[0, 87] (* Jean-François Alcover, Nov 26 2020, after Alois P. Heinz *)

A294071 Number of ordered ways of writing n^2 as a sum of n squares > 1.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 6, 7, 288, 262, 13702, 69531, 610567, 5356091, 51724960, 521956086, 5467658641, 59931636545, 690518644584, 8100858045744, 99142980567486, 1246972499954475, 16142015005905558, 215722810653380845, 2955759897694815985, 41614888439136252691
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2018

Keywords

Examples

			a(5) = 5 because we have [9, 4, 4, 4, 4], [4, 9, 4, 4, 4], [4, 4, 9, 4, 4], [4, 4, 4, 9, 4] and [4, 4, 4, 4, 9].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[((-1 - 2 x + EllipticTheta[3, 0, x])/2)^n, {x, 0, n^2}], {n, 0, 25}]

Formula

a(n) = [x^(n^2)] (Sum_{k>=2} x^(k^2))^n.
Showing 1-7 of 7 results.