cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281372 Coefficients in q-expansion of (E_2*E_4 - E_6)/720, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 18, 84, 292, 630, 1512, 2408, 4680, 6813, 11340, 14652, 24528, 28574, 43344, 52920, 74896, 83538, 122634, 130340, 183960, 202272, 263736, 279864, 393120, 393775, 514332, 551880, 703136, 707310, 952560, 923552, 1198368, 1230768, 1503684, 1517040, 1989396, 1874198, 2346120, 2400216, 2948400
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2017

Keywords

Comments

The q-expansion of the square of this expression is given in A281371.
Multiplicative because A001158 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Programs

  • Magma
    [0] cat [n*DivisorSigma(3, n): n in [1..50]]; // Vincenzo Librandi, Mar 01 2018
  • Maple
    with(gfun):
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    t1:=series((e2*e4-e6)/720,q,M+1);
    seriestolist(t1);
    # alternative program
    seq(add(sigma[4](d)*phi(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 20 2024
  • Mathematica
    Table[If[n==0, 0, n * DivisorSigma[3, n]], {n, 0, 40}] (* Indranil Ghosh, Mar 11 2017 *)
    terms = 41; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[(Ei[2] Ei[4] - Ei[6])/720 + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
  • PARI
    for(n=0, 40, print1(if(n==0, 0, n * sigma(n, 3)), ", ")) \\ Indranil Ghosh, Mar 11 2017
    

Formula

a(n) = A145094(n)/240 for n > 0. - Seiichi Manyama, Feb 04 2017
G.f.: phi_{4, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}. - Seiichi Manyama, Feb 04 2017
a(n) = n*A001158(n) for n > 0. - Seiichi Manyama, Feb 18 2017
G.f.: x*f'(x), where f(x) = Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / 450. - Vaclav Kotesovec, May 09 2022
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-4). (End)
a(n) = Sum_{k = 1..n} sigma_4( gcd(k, n) ) = Sum_{d divides n} sigma_4(d) * phi(n/d). - Peter Bala, Jan 19 2024
a(n) = Sum_{1 <= i, j, k, l <= n} sigma_1( gcd(i, j, k, l, n) ) = Sum_{d divides n} sigma_1(d) * J_4(n/d), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 22 2024