A014019 Inverse of 10th cyclotomic polynomial.
1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dror Bar-Natan, The Rolfsen Knot Table
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1).
- Index to sequences related to inverse of cyclotomic polynomials
Programs
-
Magma
&cat[[1,1,0,0,0,-1,-1,0,0,0]: n in [0..15]]; // Vincenzo Librandi, Apr 03 2014
-
Maple
with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
-
Mathematica
CoefficientList[Series[1/Cyclotomic[10, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *)
-
PARI
Vec(1/polcyclo(10)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
Formula
G.f.: 1/(1 - x + x^2 - x^3 + x^4). - Paul Barry, Oct 16 2004
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4), n > 4. - Wesley Ivan Hurt, Jun 24 2015
Comments