cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A099443 A Chebyshev transform of Fib(n+1).

Original entry on oeis.org

1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

The denominator is the 10th cyclotomic polynomial. It is also associated to the knots 4_1 and 5_1 by the Alexander and Jones polynomials respectively. The g.f. is the image of the g.f. of Fib(n+1) under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)).
With offset 1 this is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = y = z = 1.

Examples

			G.f. = 1 + x + x^2 + x^3 - x^5 - x^6 - x^7 - x^8 + x^10 + x^11 + x^12 + ...
		

Crossrefs

Cf. A156174.

Programs

  • Mathematica
    a[ n_] := With[ {m = n + 1}, Sign[Mod[m, 5]] (-1)^Quotient[m, 5]]; (* Michael Somos, Jun 17 2015 *)
    LinearRecurrence[{1, -1, 1, -1}, {1, 1, 1, 1}, 50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    {a(n) = n++; sign(n%5) * (-1)^(n\5)}; /* Michael Somos, Sep 18 2006 */

Formula

G.f.: (1+x^2)/(1-x+x^2-x^3+x^4).
a(n) = sqrt(2*(10 - 4*sqrt(5))/25)*cos((6*Pi*n +Pi)/10) + sqrt(2*(4*sqrt(5) + 10)/25)*sin(Pi*(n+1)/5).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*Fib(n-2k+1).
a(n) = Sum_{k=0..n} binomial((n+k)/2, k)*(-1)^((n-k)/2)*(1+(-1)^(n+k))*Fib(k+1)/2.
a(n) = Sum_{k=0..n} A014019(n-k)*binomial(1, k/2)(1+(-1)^k)/2.
With a leading zero, this is sum{k=0..floor(n/2), binomial(n-k-1, k)(-1)^kFib(n-2k)}, or the image of x/(1-x-x^2) under the mapping g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005
Euler transform of length 10 sequence [1, 0, 0, -1, -1, 0, 0, 0, 0, 1]. - Michael Somos, Sep 18 2006
G.f.: (1 - x^4) * (1 - x^5) / ((1 - x) * (1 - x^10)). - Michael Somos, Sep 18 2006
a(n) = -a(n-5) = -a(-2-n) for all n in Z. - Michael Somos, Sep 18 2006
Hankel transform is 1,0,0,1,0,0,0,... - Paul Barry, Jun 24 2008
0 = (a(n) - a(n+1)) * (a(n) - a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jul 07 2014
0 = a(n)*a(n-4) - a(n-1)*a(n-3) + a(n-2)*a(n-2) for all n in Z. - Michael Somos, Jul 07 2014
0 = a(n)*a(n+5) - a(n+1)*a(n+4) + a(n+2)*a(n+3) for all n in Z. - Michael Somos, Jul 07 2014
a(n) = (-1)^n * A156174(n). - Michael Somos, Oct 17 2018

A129920 Expansion of -1/(1 - x + 3*x^2 - 2*x^3 + x^4 - 2*x^5 + x^6).

Original entry on oeis.org

-1, -1, 2, 3, -4, -10, 5, 29, 2, -76, -45, 178, 212, -361, -750, 565, 2282, -306, -6206, -2428, 15176, 14353, -32719, -55104, 57933, 176234, -61524, -499047, -97429, 1271400, 921652, -2887641, -3948938, 5590078, 13380187, -7828378, -39536779, 108416, 104810904
Offset: 0

Views

Author

Roger L. Bagula, Jun 05 2007

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( -1/(1-x+3*x^2-2*x^3+x^4-2*x^5+x^6) )); // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    CoefficientList[Series[-1/(1-x +3*x^2 -2*x^3 +x^4 -2*x^5 +x^6), {x,0,50}], x]
  • SageMath
    def A129920_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -1/(1-x+3*x^2-2*x^3+x^4-2*x^5+x^6) ).list()
    A129920_list(50) # G. C. Greubel, Sep 28 2024

Formula

a(n) = a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6), n >= 6. - Franck Maminirina Ramaharo, Jan 08 2019

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019

A125629 Expansion of -1/(1 - x + x^2 - x^3 + x^4 + x^6).

Original entry on oeis.org

1, -1, 0, 0, 0, 1, 2, 2, 1, 0, -1, -3, -5, -5, -3, 0, 4, 9, 13, 13, 8, -1, -13, -26, -35, -34, -20, 6, 40, 74, 95, 89, 48, -26, -120, -209, -258, -232, -111, 98, 355, 587, 699, 601, 245, -342, -1040, -1641, -1887, -1545, -504, 1137, 3023, 4568, 5073, 3936, 912
Offset: 0

Views

Author

Roger L. Bagula, Jun 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1 - x + x^2 - x^3 + x^4 + x^6), {x, 0, 50}], x]

Formula

G.f.: 1/(x^(17/2)*f(x)), where f(x) = -1/x^(5/2) - 1/x^(9/2) + 1/x^(11/2) + -1/x^(13/2) + 1/x^(15/2) - 1/x^(17/2) is the Jones polynomial for the link with Dowker-Thistlethwaite notation L6a3.
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-6), n >= 6. - Franck Maminirina Ramaharo, Jan 08 2019

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019

A134119 a(n) = floor(n^2/10) - floor((n-1)^2/10).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17
Offset: 0

Views

Author

Keywords

Comments

Note that for n >=1 there is a pattern that keeps steadily alternating between 4 terms and 6 terms for the each two consecutive groups. The terms value remains the same within each 4-term or 6-term group, while during the switch from the 4-group to the 6-group and then back from the 6-group to the 4-group, etc., the term value is getting bumped by 1.
Assuming this obeys the recurrence a(n) = a(n-10) + 2, this has generating function G(x) = x^4*(1+x^4)/[(-1+x)^2*(x+1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)] = (1 - 3x^2 - 3x^3)/[10(x^4 + x^3 + x^2 + x + 1)]+1/[10(x+1)] + 1/[5(-1+x)^2] +(-1 + 2x - 3x^2 - x^3)/[10(x^4 - x^3 + x^2 - x + 1)] + 3/[10(-1+x)]. The first term can be rewritten as a linear superposition of A104384(n), A104384(n+2), A103483(n+3); the second, ~1/(x+1), with the alternating A033999, the third component ~1/(x-1)^2 with a(n)=n+1, the next ~1/(x^4 - x^3 + x^2 - x + 1) = A014019 and the last is proportional to 1/(1-x) = A000012. So a(n) is a sum of these sequences. - R. J. Mathar, Jan 16 2008

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^2/10] - Floor[(n - 1)^2/10], {n, 0, 50}] (* G. C. Greubel, Feb 22 2017 *)
  • PARI
    a(n)= floor(n^2/10) - floor((n-1)^2/10)

Formula

Empirical g.f.: x^4*(x^4+1) / (x^11 - x^10 - x + 1). - Colin Barker, Aug 08 2013
The above conjectured g.f. is correct. - Sela Fried, Dec 08 2024

Extensions

More terms from N. J. A. Sloane, Jan 22 2008

A281861 Riordan transform of the Fibonacci sequence with the Riordan matrix A053121.

Original entry on oeis.org

0, 1, 1, 4, 6, 18, 32, 85, 165, 411, 839, 2013, 4237, 9933, 21317, 49236, 107014, 244750, 536500, 1218888, 2687362, 6077644, 13453606, 30329434, 67326816, 151439158, 336842092, 756452890, 1684953360, 3779590010, 8427441240
Offset: 0

Views

Author

Wolfdieter Lang, Feb 18 2017

Keywords

Comments

The Riordan matrix A053121 of the Bell type R = (c(x^2), x*c(x^2)), with the o.g.f. c of A000108 (Catalan), is the inverse of the Riordan matrix A049310 (Chebyshev S).
The Riordan transform of a sequence {a_n}, n >= 0 to a sequence {b_n}, n >= 0 is b = R a
in matrix notation, with the lower triangular Riordan matrix (N x N, with arbitrary large N).

Crossrefs

Formula

G.f.: c(x^2)*A(x*c(x^2)) with the g.f. c of A000108 (Catalan) and A of A000045 (Fibonacci).
a(n) = Sum_{m=0..n} R(n, m)*F(n), with R(n, m) = A053121(n, m) and F(m) = A000045(m), n >= 0.

A099494 A Chebyshev transform of Fibonacci(n)+(-1)^n.

Original entry on oeis.org

1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1, 0, -1, 0, 1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1, 0, -1, 0, 1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1
Offset: 0

Views

Author

Paul Barry, Oct 19 2004

Keywords

Comments

A Chebyshev transform of A008346, which has g.f. 1/(1-2x^2-x^3). The image of G(x) under the Chebyshev transform is (1/(1+x^2))*G(x/(1+x^2)).
Periodic with period length 30. - Ray Chandler, Sep 08 2015

Crossrefs

Formula

G.f.: (1+x^2)^2/(1+x^2-x^3+x^4+x^6).
a(n) = -a(n-2)+a(n-3)-a(n-4)-a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*(F(n-2*k)+(-1)^(n-2*k)).
a(n) = A014019(n-1) + A000484(n).
Showing 1-6 of 6 results.