A029830
Eisenstein series E_20(q) (alternate convention E_10(q)), multiplied by 174611.
Original entry on oeis.org
174611, 13200, 6920614800, 15341851377600, 3628395292275600, 251770019531263200, 8043563916910526400, 150465416446925500800, 1902324110996589786000, 17831242688625346952400, 132000251770026451864800, 807299993919072011054400, 4217144038884527916580800, 19297347832955888660949600
Offset: 0
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18), this sequence (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24).
-
terms = 14;
E20[x_] = 174611 + 13200*Sum[k^19*x^k/(1 - x^k), {k, 1, terms}];
E20[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
-
a(n)=if(n<1,174611*(n==0),13200*sigma(n,19))
A282012
Coefficients in q-expansion of E_4^4, where E_4 is the Eisenstein series shown in A004009.
Original entry on oeis.org
1, 960, 354240, 61543680, 4858169280, 137745912960, 2120861041920, 21423820362240, 158753769048000, 928983317334720, 4512174992346240, 18847874280625920, 69518972236842240, 230951926208599680, 701949379778818560, 1975788826748167680
Offset: 0
- G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 207.
-
terms = 16;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282330
Coefficients in q-expansion of E_4^6, where E_4 is the Eisenstein series A004009.
Original entry on oeis.org
1, 1440, 876960, 292072320, 57349833120, 6660135541440, 436536302762880, 15172132360815360, 327295477379498400, 4913576699608450080, 55439481453769056960, 496426192564963006080, 3672749219557161663360, 23148323907214334109120
Offset: 0
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^6 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282431
Coefficients in q-expansion of E_2^5, where E_2 is the Eisenstein series A006352.
Original entry on oeis.org
1, -120, 5400, -104160, 511800, 6770736, -19504800, -452207040, -2959622280, -12932941080, -44497080432, -129918587040, -335811977760, -788655411600, -1714912983360, -3498061536576, -6761506680840, -12481939678320, -22138262633160, -37922739116640
Offset: 0
-
terms = 20;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282402
Coefficients in q-expansion of E_4^7, where E_4 is the Eisenstein series A004009.
Original entry on oeis.org
1, 1680, 1224720, 505659840, 129351117840, 21060890131680, 2160822606183360, 134717272385473920, 4957295423282269200, 119288258695393463760, 2051465861242156554720, 26894077218337493424960, 281803532524538902825920
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^7 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282433
Coefficients in q-expansion of E_6^5, where E_6 is the Eisenstein series A013973.
Original entry on oeis.org
1, -2520, 2457000, -1113204960, 199879986600, 4992350445936, -3054519828108000, -316433406335739840, -15444821445342229080, -469944493113793897080, -9973874479528786860432, -158211337782226162119840, -1972932224893221543809760
Offset: 0
-
terms = 13;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E6[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282474
Coefficients in q-expansion of E_4^8, where E_4 is the Eisenstein series A004009.
Original entry on oeis.org
1, 1920, 1630080, 803228160, 253366181760, 53205643249920, 7498254194403840, 699684356363412480, 42100628403784982400, 1614922125605880493440, 42332208491309728078080, 812648422343847344279040, 12060223533365891970132480
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^8 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A299955
Coefficients in expansion of E_4^(3/2).
Original entry on oeis.org
1, 360, 24840, -465120, 57417480, -6800282640, 930889890720, -139401582644160, 22250341370421000, -3723955494287559480, 646515765251485521840, -115559140273640812421280, 21150946022800731753255840, -3948247836773858791840263120
Offset: 0
E_4^(k/8):
A108091 (k=1),
A289307 (k=2),
A289308 (k=3),
A289292 (k=4),
A289309 (k=5),
A289318 (k=6),
A289319 (k=7),
A004009 (k=8), this sequence (k=12),
A008410 (k=16),
A008411 (k=24),
A282012 (k=32),
A282015 (k=40).
A004671
Theta series of extremal even unimodular lattice in dimension 40.
Original entry on oeis.org
1, 0, 39600, 87859200, 20779902000, 1441891123200, 46065617928000, 861717856665600, 10894640750334000, 102119813013504000, 755967560945968800, 4623420024622080000, 24151651608982497600, 110516220812493619200
Offset: 0
G.f.: 1 + 39600*q^2 + 87859200*q^3 + ...
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 195.
-
e4 = eisenstein_series_qexp(4,20,normalization = "integral");
delta = CuspForms(1,12).0.q_expansion(20);
e4^5-1200*e4^2*delta # Andy Huchala, May 07 2021
Showing 1-9 of 9 results.
Comments