cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282211 Coefficients in q-expansion of (6*E_2^2*E_4 - 8*E_2*E_6 + 3*E_4^2 - E_2^4)/6912, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 24, 108, 448, 750, 2592, 2744, 7680, 9477, 18000, 15972, 48384, 30758, 65856, 81000, 126976, 88434, 227448, 137180, 336000, 296352, 383328, 292008, 829440, 484375, 738192, 787320, 1229312, 731670, 1944000, 953312, 2064384, 1724976
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^4*6^3 + 2^4*3^3 + 3^4*2^3 + 6^4*1^3 = 2592.
		

Crossrefs

Cf. this sequence (phi_{4, 3}), A282213 (phi_{6, 3}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282208 (E_2^2*E_4), A282096 (E_2*E_6), A008410 (E_4^2 = E_8), A282210 (E_2^4).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), A282097 (n^2*sigma(n)), this sequence (n^3*sigma(n)).

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^3)*DivisorSigma[1,n];Table[a[n],{n,0,33}] (* Indranil Ghosh, Feb 21 2017 *)
  • PARI
    a(n) = if (n==0, 0, n^3*sigma(n)); \\ Michel Marcus, Feb 21 2017

Formula

G.f.: phi_{4, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (6*A282208(n) - 8*A282096(n) + 3*A008410(n) - A282210(n))/6912.
a(n) = n^3*A000203(n) for n > 0. - Seiichi Manyama, Feb 19 2017
G.f.: A(q) = Sum_{n >= 1} n^3*q^n*(q^(3*n) + 11*q^(2*n) + 11*q^n + 1)/(1 - q^n)^5. A faster converging series may be found by applying the operator x*d/dx once to equation 5 in Arndt, setting x = 1, and then applying the operator q*d/dq three times to the resulting equation. - Peter Bala, Jan 21 2021
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-4). (End)
G.f.: A(q) = Sum_{n >= 1} n^4*q^n*(q^(2*n) + 4*q^n + 1)/(1 - q^n)^4. - Mamuka Jibladze, Aug 27 2024