cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386787 a(n) = n^4*sigma_7(n).

Original entry on oeis.org

0, 1, 2064, 177228, 4227328, 48828750, 365798592, 1977329144, 8657571840, 31395415077, 100782540000, 285311685252, 749200886784, 1792160422598, 4081207353216, 8653821705000, 17730707193856, 34271896391154, 64800136718928, 116490259028540, 206415142080000, 350438089532832
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^4*DivisorSigma(7, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
  • Mathematica
    Table[n^4*DivisorSigma[7, n], {n, 0, 30}]
    (* or *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 2036*x^k + 152637*x^(2*k) + 2203488*x^(3*k) + 9738114*x^(4*k) + 15724248*x^(5*k) + 9738114*x^(6*k) + 2203488*x^(7*k) + 152637*x^(8*k) + 2036*x^(9*k) + x^(10*k))/(1 - x^k)^12, {k, 1, nmax}], {x, 0, nmax}], x]
    (* or *)
    terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(33*E2[x]^4*E4[x]^2 + 110*E2[x]^2*E4[x]^3 + 13*E4[x]^4 - 132*E2[x]^3*E4[x]*E6[x] - 132*E2[x]*E4[x]^2*E6[x] + 88*E2[x]^2*E6[x]^2 + 20*E4[x]*E6[x]^2)/41472, {x, 0, terms}], x]

Formula

G.f.: Sum_{k>=1} k^4*x^k*(1 + 2036*x^k + 152637*x^(2*k) + 2203488*x^(3*k) + 9738114*x^(4*k) + 15724248*x^(5*k) + 9738114*x^(6*k) + 2203488*x^(7*k) + 152637*x^(8*k) + 2036*x^(9*k) + x^(10*k))/(1 - x^k)^12.
a(n) = (33*A386815(n) + 110*A386816(n) + 13*A282012(n) - 132*A386817(n) - 132*A282596(n) + 88*A386818(n) + 20*A282287(n))/41472.
a(n) = n^4*A013955(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-11). - R. J. Mathar, Aug 03 2025

A282792 Coefficients in q-expansion of E_2^2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -312, -122328, 1193376, 120735336, 123318576, -26119268064, -383848045248, -3132125965080, -18290795499096, -84925855577232, -331983655889184, -1133781877844448, -3470165144567184, -9697162366507968, -25093220330304576, -60786860467926552
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Crossrefs

Cf. A282102 (E_2*E_4*E_6), this sequence (E_2^2*E_4*E_6), A282596 (E_2*E_4^2*E_6), A282547 (E_2*E_4*E_6^2).

Programs

  • Mathematica
    terms = 17;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^2*E6[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282597 Expansion of phi_{14, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 16386, 4782972, 268468228, 6103515630, 78373779192, 678223072856, 4398583447560, 22876806803877, 100012207113180, 379749833583252, 1284076017413616, 3937376385699302, 11113363271818416, 29192944359852360, 72066391204823056, 168377826559400946
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2017

Keywords

Comments

Multiplicative because A013961 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), A282548 (phi_{12, 1}), this sequence (phi_{14, 1}).
Cf. A282012 (E_4^4), A282287 (E_4*E_6^2), A282596 (E_2*E_4^2*E_6).
Cf. A013672.

Programs

  • Mathematica
    Table[n * DivisorSigma[13, n], {n, 0, 17}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 13)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013961(n) for n > 0.
a(n) = (3*A282012(n) + 4*A282287(n) - 7*A282596(n))/144.
Sum_{k=1..n} a(k) ~ zeta(14) * n^15 / 15. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(13*e+13)-1)/(p^13-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-14). (End)

A319134 Expansion of -((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(3657830400*delta^2) where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively and delta is A000594.

Original entry on oeis.org

1, 86, 3750, 109672, 2419462, 43021728, 643548464, 8343640624, 95835049605, 991606081332, 9364586280842, 81571540591968, 661034448807902, 5019357866562208, 35927279225314344, 243657157464337888, 1572638456431119570, 9696997279843999470, 57313953586222481126, 325672739267123628976
Offset: 1

Views

Author

Seiichi Manyama, Sep 11 2018

Keywords

Examples

			((25*E_4^4 - 49*E_6^2*E4) + 48*E_6*E_4^2*E_2 + (-49*E_4^3 + 25*E_6^2)*E_2^2)/(delta^2) =  - 3657830400*q - 314573414400*q^2 - 13716864000000*q^3 - 401161575628800*q^4 - ... .
		

Crossrefs

Cf. A000594, A006352 (E_2), A004009 (E_4), A013973 (E_6), A082558, A281373,
About the numerator: A282012 (E_4^4), A282287 (E_6^2*E_4), A282596 (E_6*E_4^2*E_2), A008411 (E_4^3), A280869 (E_6^2), A281374 (E_2^2).

Programs

  • Mathematica
    nmax = 25; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, nmax + 1}] + O[x]^(nmax + 1); Rest[CoefficientList[Series[-((25*E4[x]^4 - 49*E6[x]^2*E4[x]) + 48*E6[x]*E4[x]^2*E2[x] + (-49*E4[x]^3 + 25*E6[x]^2)* E2[x]^2) / (3657830400 * x^2 * QPochhammer[x]^48), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 12 2018 *)

Formula

a(n) ~ exp(4*Pi*sqrt(2*n)) / (132300 * 2^(1/4) * Pi^2 * n^(23/4)). - Vaclav Kotesovec, Sep 12 2018
Showing 1-4 of 4 results.