cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A280025 Expansion of phi_{7, 4}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 144, 2268, 18688, 78750, 326592, 825944, 2396160, 4966677, 11340000, 19501812, 42384384, 62777078, 118935936, 178605000, 306774016, 410422194, 715201488, 894002060, 1471680000, 1873240992, 2808260928, 3405105288, 5434490880, 6152734375, 9039899232
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2017

Keywords

Comments

Multiplicative because A001158 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Cf. A280022 (phi_{5, 4}), this sequence (phi_{7, 4}).
Cf. A280024 (E_2^4*E_4), A282780 (E_2^3*E_6), A282752 (E_2^2*E_4^2), A282102 (E_2*E_4*E_6), A008411 (E_4^3), A280869 (E_6^2).
Cf. A001158 (sigma_3(n)), A281372 (n*sigma_3(n)), A282099 (n^2*sigma_3(n)), A282213 (n^3*sigma_3(n)), this sequence (n^4*sigma_3(n)).
Cf. A152649.

Programs

  • Mathematica
    Table[n^4 * DivisorSigma[3, n], {n, 0, 30}] (* Amiram Eldar, Oct 31 2023 *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 120*x^k + 1191*x^(2*k) + 2416*x^(3*k) + 1191*x^(4*k) + 120*x^(5*k) + x^(6*k))/(1 - x^k)^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n^4 * sigma(n, 3)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = n^4*A001158(n) for n > 0.
a(n) = (7*(A280024(n) - 4*A282780(n) + 6*A282752(n) - 4*A282102(n)) + 3*A008411(n) + 4*A280869(n))/41472.
Sum_{k=1..n} a(k) ~ c * n^8, where c = Pi^4/720 = 0.1352904... (= A152649 / 10). - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(4*e) * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-4)*zeta(s-7). (End)
G.f.: Sum_{k>=1} k^4*x^k*(1 + 120*x^k + 1191*x^(2*k) + 2416*x^(3*k) + 1191*x^(4*k) + 120*x^(5*k) + x^(6*k))/(1 - x^k)^8. - Vaclav Kotesovec, Aug 02 2025

A282753 Expansion of phi_{9, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 516, 19692, 264208, 1953150, 10161072, 40353656, 135274560, 387597717, 1007825400, 2357947812, 5202783936, 10604499542, 20822486496, 38461429800, 69260574976, 118587876786, 200000421972, 322687698140, 516037855200, 794644193952, 1216701070992
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A013955 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), A282751 (phi_{7, 2}), this sequence (phi_{9, 2}).
Cf. A282752 (E_2^2*E_4^2), A282102 (E_2*E_4*E_6), A008411 (E_4^3), A280869 (E_6^2).
Cf. A013955 (sigma_7(n)), A282060 (n*sigma_7(n)), this sequence (n^2*sigma_7(n)).
Cf. A013666.

Programs

  • Mathematica
    Table[If[n>0, n^2 * DivisorSigma[7, n], 0], {n, 0, 22}] (* Indranil Ghosh, Mar 12 2017 *)
    nmax = 40; CoefficientList[Series[Sum[k^9*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    for(n=0, 22, print1(if(n==0, 0, n^2 * sigma(n, 7)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

a(n) = n^2*A013955(n) for n > 0.
a(n) = (9*A282752(n) - 18*A282102(n) + 5*A008411(n) + 4*A280869(n))/8640.
Sum_{k=1..n} a(k) ~ zeta(8) * n^10 / 10. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-9). (End)
G.f.: Sum_{k>=1} k^9*x^k*(1 + x^k)/(1 - x^k)^3. - Vaclav Kotesovec, Aug 02 2025

A282781 Expansion of phi_{8, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 264, 6588, 67648, 390750, 1739232, 5765144, 17318400, 43224597, 103158000, 214360212, 445665024, 815732918, 1521998016, 2574261000, 4433514496, 6975762354, 11411293608, 16983569900, 26433456000, 37980768672, 56591095968, 78310997448
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A282211 (phi_{4, 3}), A282213 (phi_{6, 3}), this sequence (phi_{8, 3}).
Cf. A282752 (E_2^2*E_4^2), A282780 (E_2^3*E_6), A282102 (E_2*E_4*E_6), A008411 (E_4^3), A280869 (E_6^2).
Cf. A001160 (sigma_5(n)), A282050 (n*sigma_5(n)), A282751 (n^2*sigma_5(n)), this sequence (n^3*sigma_5(n)).
Cf. A013664.

Programs

  • Mathematica
    a[0]=0;a[n_]:=(n^3)*DivisorSigma[5,n];Table[a[n],{n,0,23}] (* Indranil Ghosh, Feb 21 2017 *)
    nmax = 30; CoefficientList[Series[Sum[k^8*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if (n==0, 0, n^3*sigma(n, 5)); \\ Michel Marcus, Feb 21 2017

Formula

a(n) = n^3*A001160(n) for n > 0.
a(n) = (6*A282752(n) - 2*A282780(n) - 6*A282102(n) + A008411(n) + A280869(n))/5184.
Sum_{k=1..n} a(k) ~ zeta(6) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-8). (End)
G.f.: Sum_{k>=1} k^8*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4. - Vaclav Kotesovec, Aug 02 2025

A126861 Coefficients in quasimodular form 12*F_3(q) of level 1 and weight 12.

Original entry on oeis.org

0, 0, 1, 80, 1224, 9152, 45276, 170784, 534464, 1438848, 3507102, 7711600, 16053728, 30831552, 57578072, 100382304, 173117952, 280579200, 455656725, 697508496, 1079398256, 1580599552, 2351610612, 3315523424, 4785293568, 6534524160, 9173253878, 12226860576
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 2007

Keywords

Examples

			12*F_3(q) = q^2 + 80*q^3 + 1224*q^4 + 9152*q^5 + 45276*q^6 + 170784*q^7 + 534464*q^8 + ...
		

Crossrefs

Cf. A280024 (E_2^4*E_4), A308285 (E_2^6), A282752 (E_2^2*E_4^2), A008411 (E_4^3), A282780 (E_2^3*E_6), A282102 (E_2*E_4*E_6), A280869 (E_6^2).

Formula

F_3(q) = (15*E(2)^4*E(4) - 6*E(2)^6 - 12*E(2)^2*E(4)^2 + 7*E(4)^3 + 4*E(2)^3*E(6) - 12*E(2)*E(4)*E(6) + 4*E(6)^2)/35831808, where E(k) is the normalized Eisenstein series of weight k (cf. A006352, etc.).
Showing 1-4 of 4 results.