cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A231655 Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 4, 2, 1, 1, 3, 10, 25, 41, 48, 41, 25, 10, 3, 1, 1, 4, 22, 87, 244, 526, 870, 1110, 1110, 870, 526, 244, 87, 22, 4, 1, 1, 5, 41, 238, 1029, 3450, 9147, 19524, 34104, 49231, 59038, 59038, 49231, 34104, 19524, 9147, 3450, 1029, 238
Offset: 0

Views

Author

Heinrich Ludwig, Nov 14 2013

Keywords

Comments

Number of orbits under dihedral group D_6 of order 6. - N. J. A. Sloane, Sep 12 2019

Examples

			Triangle T(n, k) is irregularly shaped: 0 <= k <= n*(n+1)/2+1. The first row corresponds to n = 1, the first column corresponds to k = 0. Rows are palindromic.
  1,  1;
  1,  1,  1,  1;
  1,  2,  4,  6,  4,  2,  1;
  1,  3, 10, 25, 41, 48, 41, 25, 10,  3,  1;
  ...
There are T(3, 2) = 4 nonisomorphic choices of 2 points (X) in an equilateral triangle grid of side 3:
      X       .       .       X
     . .     X X     . .     X .
    . X .   . . .   X . X   . . .
		

Crossrefs

A283114 Number of nonequivalent ways (mod D_3) to place 3 points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.

Original entry on oeis.org

0, 0, 0, 1, 5, 23, 82, 230, 560, 1208, 2392, 4405, 7673, 12733, 20320, 31326, 46914, 68460, 97698, 136635, 187737, 253813, 338240, 444818, 578038, 742898, 945224, 1191443, 1488955, 1845865, 2271410, 2775640, 3369910, 4066506, 4879200, 5822823, 6913887, 8170095
Offset: 1

Views

Author

Heinrich Ludwig, Mar 01 2017

Keywords

Comments

In terms of triangular chess: Number of nonequivalent ways (mod D_3) to arrange 3 nonattacking rooks on an n X n X n board.
Reflections and rotations of placements are not counted. For numbers if they are to be counted see A193981.

Examples

			There is a(4) = 1 way to place 3 points on a 4 X 4 X 4 grid, rotations and reflections ignored:
     .
    X .
   . . X
  . X . .
		

Crossrefs

Cf. A193981, A283113, A283115 (4 points), A283116 (5 points).

Programs

  • Mathematica
    Table[(n^6 - 9 n^5 + 27 n^4 - 20 n^3 - 24 n^2 + 24 n)/288 + Boole[OddQ@ n] (n^2 - 3 n - 5)/32 + Boole[Mod[n, 3] == 1] 2/9, {n, 38}] (* or *)
    Rest@ CoefficientList[Series[x^4*(1 + 2 x + 8 x^2 + 20 x^3 + 16 x^4 + 10 x^5 + 3 x^6)/((1 - x)^7*(1 + x)^3*(1 + x + x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Mar 01 2017 *)
    LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,0,0,1,5,23,82,230,560,1208,2392,4405},40] (* Harvey P. Dale, May 07 2022 *)
  • PARI
    concat(vector(3), Vec(x^4*(1 + 2*x + 8*x^2 + 20*x^3 + 16*x^4 + 10*x^5 + 3*x^6) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2)) + O(x^30))) \\ Colin Barker, Mar 01 2017

Formula

a(n) = (n^6 - 9*n^5 + 27*n^4 - 20*n^3 - 24*n^2 + 24*n)/288 + IF(MOD(n, 2) = 1, n^2 - 3*n - 5)/32 + IF(MOD(n, 3) = 1, 2)/9.
G.f.: x^4*(1 + 2*x + 8*x^2 + 20*x^3 + 16*x^4 + 10*x^5 + 3*x^6) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2)). - Colin Barker, Mar 01 2017
a(n) = ( 2*n^6 - 18*n^5 + 54*n^4 - 40*n^3 - 39*n^2 + 21*n - 45 - 9*(n^2 - 3*n - 5)*(-1)^n + 128*((n mod 3) mod 2) )/576. - Bruno Berselli, Mar 01 2017

A283115 Number of nonequivalent ways (mod D_3) to place 4 points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 40, 242, 1038, 3504, 9998, 25158, 57410, 121023, 239148, 447552, 799764, 1373400, 2278290, 3666036, 5742396, 8781111, 13141326, 19287246, 27811906, 39463424, 55177122, 76109826, 103681214, 139618479, 186008654, 245354424, 320640264, 415401264
Offset: 1

Views

Author

Heinrich Ludwig, Mar 01 2017

Keywords

Comments

In terms of triangular chess: Number of nonequivalent ways (mod D_3) to arrange 4 nonattacking rooks on an n X n X n board.
Reflections and rotations of placements are not counted. For numbers if they are to be counted see A193982.

Examples

			There are a(6) = 3 ways to place 4 points on an 6 X 6 X 6 grid, rotations and reflections ignored:
       .             X             .
      . X           . .           X .
     . . .         . . .         . . X
    . . X .       . . X .       . . . .
   X . . . .     . X . . .     . X . . .
  . . . X . .   . . . X . .   . . . X . .
		

Crossrefs

Cf. A193982, A283113, A283114 (3 points), A283116 (5 points).

Programs

  • Mathematica
    Table[(5 n^8 - 100 n^7 + 810 n^6 - 3336 n^5 + 6940 n^4 - 5120 n^3 - 4080 n^2 + 6336 n)/11520 + Boole[OddQ@ n] (4 n^3 - 38 n^2 + 144 n - 207)/768 + Boole[Mod[n, 3] == 1] (n^2 - 6 n + 8)/18 - Boole[Mod[n, 6] == 1]/6, {n, 34}] (* or *)
    Rest@ CoefficientList[Series[x^6*(3 + 31 x + 122 x^2 + 330 x^3 + 630 x^4 + 920 x^5 + 1128 x^6 + 1224 x^7 + 1124 x^8 + 924 x^9 + 644 x^10 + 336 x^11 + 117 x^12 + 27 x^13)/((1 - x)^9*(1 + x)^4*(1 - x + x^2) (1 + x + x^2)^3), {x, 0, 34}], x] (* Michael De Vlieger, Mar 01 2017 *)
  • PARI
    concat(vector(5), Vec(x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3) + O(x^40))) \\ Colin Barker, Mar 01 2017

Formula

a(n) = (5*n^8 - 100*n^7 + 810*n^6 - 3336*n^5 + 6940*n^4 - 5120*n^3 - 4080*n^2 + 6336*n)/11520 + IF(MOD(n, 2) = 1, 4*n^3 - 38*n^2 + 144*n - 207)/768 + IF(MOD(n, 3) = 1, n^2 - 6*n + 8)/18 + IF(MOD(n, 6) = 1, -1)/6.
G.f.: x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3). - Colin Barker, Mar 01 2017

A283116 Number of nonequivalent ways (mod D_3) to place 5 points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 45, 533, 3546, 16917, 64345, 207327, 587922, 1505924, 3549610, 7806420, 16188690, 31919658, 60238044, 109392480, 192015912, 326985561, 541900545, 876326275, 1385991432, 2148140345, 3268293567, 4888684275, 7198705228, 10447710630, 14960606226
Offset: 1

Views

Author

Heinrich Ludwig, Mar 01 2017

Keywords

Comments

In terms of triangular chess: Number of nonequivalent ways (mod D_3) to arrange 5 nonattacking rooks on an n X n X n board.
Reflections and rotations of placements are not counted. For numbers if they are to be counted see A193983.

Examples

			There is a(7) = 1 way to place 5 points on a 7 X 7 X 7 grid, rotations and reflections ignored:
         .
        . .
       . X .
      . . . X
     X . . . .
    . . X . . .
   . . . . X . .
		

Crossrefs

Cf. A193983, A283113, A283114 (3 points), A283115 (4 points).

Programs

  • Mathematica
    Table[(n^10 - 35 n^9 + 530 n^8 - 4526 n^7 + 23693 n^6 - 76544 n^5 + 141360 n^4 - 104944 n^3 - 67984 n^2 + 124224 n)/23040 + Boole[OddQ@ n] (-45 n^4 + 1350 n^3 - 13770 n^2 + 57915 n - 81225)/23040 - 2 Boole[Mod[n, 3] == 2]/9, {n, 32}] (* or *)
    Rest@ CoefficientList[Series[x^7*(1 + 40 x + 313 x^2 + 1120 x^3 + 2452 x^4 + 3596 x^5 + 3621 x^6 + 2512 x^7 + 1149 x^8 + 316 x^9)/((1 - x)^11*(1 + x)^5*(1 + x + x^2)), {x, 0, 32}], x] (* Michael De Vlieger, Mar 01 2017 *)
  • PARI
    concat(vector(6), Vec(x^7*(1 + 40*x + 313*x^2 + 1120*x^3 + 2452*x^4 + 3596*x^5 + 3621*x^6 + 2512*x^7 + 1149*x^8 + 316*x^9) / ((1 - x)^11*(1 + x)^5*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Mar 01 2017

Formula

a(n) = (n^10 - 35*n^9 + 530*n^8 - 4526*n^7 + 23693*n^6 - 76544*n^5 + 141360*n^4 - 104944*n^3 - 67984*n^2 + 124224*n)/23040 + IF(MOD(n, 2) = 1, - 45*n^4 + 1350*n^3 - 13770*n^2 + 57915*n - 81225)/23040 + IF(MOD(n, 3) = 2, -2)/9.
G.f.: x^7*(1 + 40*x + 313*x^2 + 1120*x^3 + 2452*x^4 + 3596*x^5 + 3621*x^6 + 2512*x^7 + 1149*x^8 + 316*x^9) / ((1 - x)^11*(1 + x)^5*(1 + x + x^2)). - Colin Barker, Mar 01 2017

A283117 Number of nonequivalent ways (mod D_3) to place rooks on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.

Original entry on oeis.org

2, 2, 4, 8, 19, 51, 169, 592, 2281, 9268, 39521, 175875, 813780, 3903533, 19367571, 99208196, 523695465, 2844708347, 15877906262, 90955375095, 534101204061
Offset: 1

Views

Author

R. J. Mathar, Jul 07 2017

Keywords

Crossrefs

Row sums of A283113.

Formula

a(n) = Sum_{k=0..A004396(n)} A283113(n,k).
a(n) = (A289709(n) + 2*A326611(n) + 3*2^ceiling(n/2))/6. - Andrew Howroyd, Sep 12 2019

Extensions

Name changed by Andrew Howroyd, Sep 12 2019
Showing 1-5 of 5 results.