cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A283238 Expansion of exp( Sum_{n>=1} sigma_2(3*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 10, 75, 447, 2335, 10977, 47667, 193775, 745819, 2738568, 9653342, 32821384, 108061167, 345622069, 1076767956, 3275039352, 9743874779, 28405248949, 81256123017, 228383836091, 631427595230, 1718990010867, 4612234492354, 12206598044861, 31889379237288
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(3*n)*x^n/n ): A182819 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} sigma_2(m*n)*x^n/n ): A000219 (m=1), A283224 (m=2), this sequence (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_2(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A099978 Bisection of A001157: a(n) = sigma_2(2n-1).

Original entry on oeis.org

1, 10, 26, 50, 91, 122, 170, 260, 290, 362, 500, 530, 651, 820, 842, 962, 1220, 1300, 1370, 1700, 1682, 1850, 2366, 2210, 2451, 2900, 2810, 3172, 3620, 3482, 3722, 4550, 4420, 4490, 5300, 5042, 5330, 6510, 6100, 6242, 7381, 6890, 7540, 8420, 7922, 8500
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Examples

			From _M. F. Hasler_, Mar 06 2017: (Start)
a(1) = sigma_2(2*1-1) = 1.
a(2) = sigma_2(2*2-1) = 1 + 3^2 = 10.
a(5) = sigma_2(2*5-1) = 1 + 3^2 + 9^2 = 91. (End)
G.f.: A(x) = x + 10*x^2 + 26*x^3 + 50*x^4 + 91*x^5 + 122*x^6 + 170*x^7 + 260*x^8 + 290*x^9 + 362*x^10 + 500*x^11 + 530*x^12 + ... where A(x) = x/(1 - x) + 3^2*x^2/(1 - x^3) + 5^2*x^3/(1 - x^5) + 7^2*x^4/(1 - x^7) + 9^2*x^5/(1 - x^9) + .... - _Paul D. Hanna_, Jun 23 2025
		

Crossrefs

Cf. A099979(n) = sigma_2(2n), the other bisection of A001157.
Cf. A283224.

Programs

Formula

a(n) = A001157(2n-1) = sigma_2(2n-1). - M. F. Hasler, Mar 06 2017
Sum_{k=1..n} a(k) ~ 7*zeta(3)*n^3/6. - Vaclav Kotesovec, Aug 07 2022
G.f.: Sum_{n>=1} (2*n-1)^2 * x^n / (1 - x^(2*n-1)). - Paul D. Hanna, Jun 23 2025

Extensions

More terms from Emeric Deutsch, Dec 07 2004
Edited by M. F. Hasler, Mar 06 2017

A282327 Expansion of exp( Sum_{n>=1} sigma_3(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 9, 77, 534, 3320, 18933, 100770, 506697, 2428161, 11161765, 49469005, 212246744, 884491121, 3589900607, 14223638534, 55122970206, 209307080221, 779837798559, 2854660220661, 10278494869342, 36439277959593, 127311828611819, 438712861233581
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(2*n)*x^n/n ): A182818 (k=1), A283224 (k=2), this sequence (k=3).
Cf. exp( Sum_{n>=1} sigma_3(m*n)*x^n/n ): A023871 (m=1), this sequence (m=2), A283244 (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_3(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283242 Expansion of exp( Sum_{n>=1} -sigma_2(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -5, 2, 15, 12, -36, -92, -17, 167, 358, 283, -293, -1321, -2012, -1101, 2299, 7296, 10505, 6901, -7705, -31240, -52490, -51336, -6032, 91521, 217064, 303776, 250595, -36282, -575622, -1234465, -1684515, -1448538, -66980, 2610835, 6087681, 8990575
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. A283224 (exp( Sum_{n>=1} sigma_2(2*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(2*n)*x^n/n ): A115110 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} -sigma_2(m*n)*x^n/n ): A073592 (m=1), this sequence (m=2), A283243 (m=3).

Formula

a(n) = -(1/n)*Sum_{k=1..n} sigma_2(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
Showing 1-4 of 4 results.