cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A283272 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is expansion of Product_{j>=1} (1-x^j)^(j^k) in power of x.

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -1, -2, 0, 1, -1, -4, -1, 0, 1, -1, -8, -5, 0, 1, 1, -1, -16, -19, -1, 4, 0, 1, -1, -32, -65, -9, 21, 4, 1, 1, -1, -64, -211, -55, 127, 49, 7, 0, 1, -1, -128, -665, -285, 807, 500, 81, 3, 0, 1, -1, -256, -2059, -1351, 5179, 4809, 1038, 45
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,   1,   1,    1, ...
  -1, -1, -1,  -1,  -1,   -1, ...
  -1, -2, -4,  -8, -16,  -32, ...
   0, -1, -5, -19, -65, -211, ...
   0,  0, -1,  -9, -55, -285, ...
   1,  4, 21, 127, 807, 5179, ...
		

Crossrefs

Row k=5 gives A281581.
Main diagonal gives A283333.
Cf. A144048.

Formula

G.f. of column k: Product_{j>=1} (1-x^j)^(j^k).

A283271 Expansion of exp( Sum_{n>=1} -sigma_5(n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -1, -16, -65, -55, 807, 4809, 13135, 550, -169070, -862710, -2281174, -1221309, 20194565, 114391575, 346400092, 486546751, -1239516671, -11089537215, -41702958960, -93143227027, -45337210750, 674845109986, 3682196642725, 11405949184465, 20796945542222
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2017

Keywords

Comments

Let A(x) denote the g.f. and let m be an integer. Define a sequence by u(n) = [x^n] A(x)^(m*n). We conjecture that the supercongruence u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) holds for all positive integers n and r and all primes p >= 7. Cf. A380581. - Peter Bala, Jan 21 2025

Crossrefs

Column k=4 of A283272.
Cf. A023873 (exp( Sum_{n>=1} sigma_5(n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), this sequence (k=5).

Formula

G.f.: Product_{n>=1} (1 - x^n)^(n^4).
a(n) = -(1/n)*Sum_{k=1..n} sigma_5(k)*a(n-k).

A283264 Expansion of exp( Sum_{n>=1} -sigma_4(n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -1, -8, -19, -9, 127, 500, 1038, 448, -4967, -21463, -50043, -59084, 70418, 600080, 1837349, 3532062, 3179251, -6965009, -42260393, -119597290, -224546234, -223670132, 292245783, 2156083245, 6428174973, 13030612271, 16820582355, -133402359, -78307103593
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2017

Keywords

Crossrefs

Column k=3 of A283272.
Cf. A023872 (exp( Sum_{n>=1} sigma_4(n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), this sequence (k=4), A283271 (k=5).

Programs

  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: -n^3)
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{n>=1} (1 - x^n)^(n^3).
a(n) = -(1/n)*Sum_{k=1..n} sigma_4(k)*a(n-k).

A380290 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^2) is the g.f. of A023871.

Original entry on oeis.org

1, 1, 11, 73, 539, 3976, 30107, 229811, 1771803, 13749742, 107305836, 841211966, 6619647419, 52258136399, 413682035393, 3282569032273, 26101575743771, 207930807629248, 1659134361686186, 13258065574274885, 106084302933126364, 849845499077000534, 6815530442695480418, 54712839001004065090
Offset: 0

Views

Author

Peter Bala, Jan 19 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for the present sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 7 (checked up to p = 61).
More generally, we conjecture that the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 7 and positive integers n and r. Some examples are given below.

Examples

			Examples of supercongruences:
a(7) - a(1) = 229811 - 1 = 2*5*(7^3)*67 == 0 (mod 7^3)
a(3*7) - a(3) = 849845499077000534 - 73 = (7^3)*29243*84727410689 == 0 (mod 7^3)
a(19) - a(1) = 13258065574274885 - 1 = (2^2)*11*(19^3)*29*26723*56687 == 0 (mod 19^3)
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add(sigma[3](k)*x^k/k, k = 1..23)),x,24):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
    (* or *)
    Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[3, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_3(k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 8.20432131153340331179513077696629277558952852444670658917204305357709... and c = 0.2513708881073263860977360125648021910598660424705749139651716452651... - Vaclav Kotesovec, Jul 30 2025

A283336 Expansion of exp( Sum_{n>=1} -sigma_6(n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -1, -32, -211, -285, 5179, 44784, 162062, -125122, -5187417, -32587255, -95706881, 122837972, 3039216222, 17745876032, 52825817007, -24340390929, -1256623249600, -7805634068163, -26364952524572, -20649978457115, 368666542515083, 2777231006764690
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2017

Keywords

Crossrefs

Column k=5 of A283272.
Cf. A023874 (exp( Sum_{n>=1} sigma_6(n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), A283271 (k=5), this sequence (k=6), A283337 (k=7), A283338 (k=8), A283339 (k=9), A283340 (k=10).

Programs

  • Mathematica
    a[n_] := If[n<1, 1,-(1/n) * Sum[DivisorSigma[6, k] a[n - k], {k, n}]]; Table[a[n], {n, 0, 22}] (* Indranil Ghosh, Mar 16 2017 *)
  • PARI
    a(n) = if(n<1, 1, -(1/n) * sum(k=1, n, sigma(k, 6) * a(n - k)));
    for(n=0, 22, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 16 2017

Formula

G.f.: Product_{n>=1} (1 - x^n)^(n^5).
a(n) = -(1/n)*Sum_{k=1..n} sigma_6(k)*a(n-k).

A283337 Expansion of exp( Sum_{n>=1} -sigma_7(n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -1, -64, -665, -1351, 33111, 408149, 1959491, -4502590, -149420286, -1182474566, -3678670450, 22384197409, 377982157035, 2474860645111, 6161653683590, -48899064011245, -695916857379611, -4275491639488601, -10750056317745704, 69316545348329853
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2017

Keywords

Crossrefs

Column k=6 of A283272.
Cf. A023875 (exp( Sum_{n>=1} sigma_7(n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), A283271 (k=5), A283336 (k=6), this sequence (k=7), A283338 (k=8), A283339 (k=9), A283340 (k=10).

Formula

G.f.: Product_{n>=1} (1 - x^n)^(n^6).
a(n) = -(1/n)*Sum_{k=1..n} sigma_7(k)*a(n-k).

A283338 Expansion of exp( Sum_{n>=1} -sigma_8(n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -1, -128, -2059, -6069, 210067, 3664420, 23366098, -116899962, -4133365357, -41809923367, -125160180169, 2447495850838, 42931762306584, 321967686614676, 281683012498569, -23874414003295851, -318729240693402530, -1992572289343189863
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2017

Keywords

Crossrefs

Column k=7 of A283272.
Cf. A023876 (exp( Sum_{n>=1} sigma_8(n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), A283271 (k=5), A283336 (k=6), A283337 (k=7), this sequence (k=8), A283339 (k=9), A283340 (k=10).

Formula

G.f.: Product_{n>=1} (1 - x^n)^(n^7).
a(n) = -(1/n)*Sum_{k=1..n} sigma_8(k)*a(n-k).

A283339 Expansion of exp( Sum_{n>=1} -sigma_9(n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -1, -256, -6305, -26335, 1321887, 32565169, 276211695, -2659962750, -111341327890, -1454216029918, -3323783801026, 227018039015019, 4636828146319845, 39615489757794355, -132865771935151820, -9075288352543844755, -132703303201618610765
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2017

Keywords

Crossrefs

Column k=8 of A283272.
Cf. A023877 (exp( Sum_{n>=1} sigma_9(n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), A283271 (k=5), A283336 (k=6), A283337 (k=7), A283338 (k=8), this sequence (k=9), A283340 (k=10).

Formula

G.f.: Product_{n>=1} (1 - x^n)^(n^8).
a(n) = -(1/n)*Sum_{k=1..n} sigma_9(k)*a(n-k).

A283340 Expansion of exp( Sum_{n>=1} -sigma_10(n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -1, -512, -19171, -111645, 8255899, 287477144, 3248973702, -56353404842, -2946880278857, -50078654012311, -24091665240825, 19437354184565824, 486126425619195338, 4607922953609319032, -63107867988829247005, -3101395214088243725145
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2017

Keywords

Crossrefs

Column k=9 of A283272.
Cf. A023878 (exp( Sum_{n>=1} sigma_10(n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), A283271 (k=5), A283336 (k=6), A283337 (k=7), A283338 (k=8), A283339 (k=9), this sequence (k=10).

Formula

G.f.: Product_{n>=1} (1 - x^n)^(n^9).
a(n) = -(1/n)*Sum_{k=1..n} sigma_10(k)*a(n-k).

A307460 Expansion of Product_{k>=1} (1-x^k)^((-1)^k*k^2).

Original entry on oeis.org

1, 1, -3, 6, -4, -15, 54, -87, 63, 79, -405, 912, -1363, 1193, 510, -4900, 12512, -21582, 26512, -16540, -24585, 113682, -255045, 419931, -519210, 377176, 267957, -1703694, 4090424, -7179222, 9895981, -9897664, 3337614, 14790666, -49171217, 100903743
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2019

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^(n+1) * n^2, g(n) = 1.

Crossrefs

Product_{k>=1} (1-x^k)^((-1)^k*k^b): A010054 (b=0), A281781 (b=1), this sequence (b=2).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 09 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^((-1)^k*k^2)))
Showing 1-10 of 11 results. Next