cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083895 Number of divisors of n with largest digit = 8 (base 10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Examples

			n=72, 2 of the 12 divisors of 72 have largest digit =8: {8,18}, therefore a(72)=2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) nops(select(t -> max(convert(t, base, 10))=d, numtheory:-divisors(n))) end proc:
    d:= 8:
    map(f, [$1..200]); # Robert Israel, Oct 06 2019
  • Mathematica
    With[{k = 8}, Array[DivisorSum[#, 1 &, And[#[[k]] > 0, Total@ #[[k + 1 ;; 9]] == 0] &@ DigitCount[#] &] &, 105]] (* Michael De Vlieger, Oct 06 2019 *)

Formula

a(n) = A000005(n) - A083888(n) - A083889(n) - A083890(n) - A083891(n) - A083892(n) - A083893(n) - A083894(n) - A083896(n) = A083903(n) - A083902(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A283611(k) = 11.62909500243165896645... . - Amiram Eldar, Jan 04 2024

A283608 Numbers whose largest decimal digit is 5.

Original entry on oeis.org

5, 15, 25, 35, 45, 50, 51, 52, 53, 54, 55, 105, 115, 125, 135, 145, 150, 151, 152, 153, 154, 155, 205, 215, 225, 235, 245, 250, 251, 252, 253, 254, 255, 305, 315, 325, 335, 345, 350, 351, 352, 353, 354, 355, 405, 415, 425, 435, 445, 450, 451, 452, 453, 454
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054055(n) = 5.
Number of terms less than 10^n is 6^n - 5^n.
Subsequence of A011535. - David A. Corneth, Mar 25 2017
Prime terms are in A106097.

Crossrefs

Cf. Sequences of numbers whose largest decimal digit is k (for k = 1..9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), this sequence (k = 5), A283609 (k = 6), A283610 (k = 7), A283611 (k = 8), A011539 (k = 9).

Programs

  • GAP
    Filtered([1..500],n->Maximum(ListOfDigits(n))=5); # Muniru A Asiru, Feb 27 2019
  • Magma
    [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 5];
    
  • Mathematica
    Select[Range[1000], Max[IntegerDigits[#]] == 5 &] (* Giovanni Resta, Mar 19 2017 *)
  • PARI
    for(n=1, 500, if(vecmax(digits(n))==5, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • PARI
    nxt(n) = {my(d = digits(n), i, j=0, t=0); forstep(i=#d,1,-1, if(d[i]!=5, j=i; break)); if(j>0, d[j]++; if(d[j]==5, for(k=j+1,#d,d[k]=0)); if(j<#d && d[j+1]==5, for(k=j+1,#d-1,d[k]=0)); for(k=1,j-1, if(d[k]==5,for(i=j+1, #d, d[i] = 0);break)), d = vector(#d+1); d[1]=1; d[#d]=5);sum(i=1, #d, d[i]*10^(#d-i))} \\ David A. Corneth, Mar 25 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(1, 501) if max(digits(n)[1:])==5]) # Indranil Ghosh, Mar 19 2017
    

A283609 Numbers whose largest decimal digit is 6.

Original entry on oeis.org

6, 16, 26, 36, 46, 56, 60, 61, 62, 63, 64, 65, 66, 106, 116, 126, 136, 146, 156, 160, 161, 162, 163, 164, 165, 166, 206, 216, 226, 236, 246, 256, 260, 261, 262, 263, 264, 265, 266, 306, 316, 326, 336, 346, 356, 360, 361, 362, 363, 364, 365, 366, 406, 416, 426
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054055(n) = 6.
Number of terms less than 10^n is 7^n - 6^n.
Prime terms are in A106096.

Crossrefs

Cf. Sequences of numbers whose largest decimal digit is k (for k = 1..9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), A283608 (k = 5), this sequence (k = 6), A283610 (k = 7), A283611 (k = 8), A011539 (k = 9).

Programs

  • GAP
    Filtered([1..500],n->Maximum(ListOfDigits(n))=6); # Muniru A Asiru, Mar 01 2019
  • Magma
    [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 6]
    
  • Mathematica
    Select[Range[1000], Max[IntegerDigits[#]] == 6 &] (* Giovanni Resta, Mar 19 2017 *)
  • PARI
    for(n=1, 500, if(vecmax(digits(n))==6, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(1, 501) if max(digits(n)[1:])==6]) # Indranil Ghosh, Mar 19 2017
    

A283610 Numbers n whose largest decimal digit is 7.

Original entry on oeis.org

7, 17, 27, 37, 47, 57, 67, 70, 71, 72, 73, 74, 75, 76, 77, 107, 117, 127, 137, 147, 157, 167, 170, 171, 172, 173, 174, 175, 176, 177, 207, 217, 227, 237, 247, 257, 267, 270, 271, 272, 273, 274, 275, 276, 277, 307, 317, 327, 337, 347, 357, 367, 370, 371, 372
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054055(n) = 7.
Number of terms less than 10^n is 8^n - 7^n.
Prime terms are in A106095.

Crossrefs

Cf. Sequences of numbers n whose largest decimal digit is k (for k = 1 - 9): A007088 (k = 1), A277964 (k = 2), A277965 (k = 3), A277966 (k = 4), A283608 (k = 5), A283609 (k = 6), this sequence (k = 7), A283611 (k = 8), A011539 (k = 9).

Programs

  • GAP
    Filtered([1..380],n->Maximum(ListOfDigits(n))=7); # Muniru A Asiru, Feb 27 2019
  • Magma
    [n: n in [1..100000] | Maximum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 7]
    
  • Mathematica
    Select[Range[1000], Max[IntegerDigits[#]] == 7 &] (* Giovanni Resta, Mar 19 2017 *)
  • PARI
    for(n=1, 500, if(vecmax(digits(n))==7, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    [n for n in range(1, 401) if max(digits(n)[1:]) == 7]  # Indranil Ghosh, Mar 19 2017
    
Showing 1-4 of 4 results.