cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283971 a(n) = n except a(4*n + 2) = 2*n + 1.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 3, 7, 8, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 20, 21, 11, 23, 24, 25, 13, 27, 28, 29, 15, 31, 32, 33, 17, 35, 36, 37, 19, 39, 40, 41, 21, 43, 44, 45, 23, 47, 48, 49, 25, 51, 52, 53, 27, 55, 56, 57, 29, 59, 60, 61, 31, 63, 64, 65, 33, 67
Offset: 0

Views

Author

Paul Curtz, Mar 18 2017

Keywords

Comments

From Federico Provvedi, Nov 13 2018: (Start)
For n > 1, a(n) is also the cycle length generated by the cycle lengths of the digital roots, in base n, of the powers of k, with k > 0.
Example for n=10 (decimal base): for every h >= 0, the digital roots of 2^h generate a periodic cycle {1,2,4,8,7,5} with period 6; 3^h generates {1,3,9,9,9,9,...} so the periodic cycle {9} has period 1; 4^h generates the periodic cycle {1,4,7} with period 3; etc. So, for n=10 (decimal base representation) the sequence generated by the periods of the digital roots of powers of k (with k > 0) is also periodic {1,6,1,3,6,1,3,2,1} with period 9, hence a(10) = 9. (End)

Crossrefs

Programs

  • GAP
    a:=[0,1,1,3,4,5,3,7];; for n in [9..85] do a[n]:=2*a[n-4]-a[n-8]; od; a; # Muniru A Asiru, Jul 20 2018
    
  • Maple
    seq(coeff(series(x*(1+x+3*x^2+4*x^3+3*x^4+x^5+x^6)/((1-x)^2*(1+x)^2*(1+x^2)^2), x,n+1),x,n),n=0..80); # Muniru A Asiru, Jul 20 2018
  • Mathematica
    Table[If[Mod[n, 4] == 2, (n - 2)/2 + 1, n], {n, 67}] (* or *)
    CoefficientList[Series[x (1 + x + 3 x^2 + 4 x^3 + 3 x^4 + x^5 + x^6)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 67}], x] (* Michael De Vlieger, Mar 19 2017 *)
    LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {0, 1, 1, 3, 4, 5, 3, 7}, 70] (* Robert G. Wilson v, Jul 23 2018 *)
    Table[Length[FindTransientRepeat[(Length[FindTransientRepeat[Mod[#1^Range[b]-1,b-1]+1,2][[2]]]&)/@Range[2, 2*b], 2][[2]]], {b, 2, 100}] (* Federico Provvedi, Nov 13 2018 *)
  • PARI
    a(n)=if(n%4==2, n\4*2 + 1, n) \\ Charles R Greathouse IV, Mar 18 2017
    
  • PARI
    concat(0, Vec(x*(1 + x + 3*x^2 + 4*x^3 + 3*x^4 + x^5 + x^6) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2) + O(x^40))) \\ Colin Barker, Mar 19 2017
    
  • Python
    def A283971(n): return n if (n-2)&3 else n>>1 # Chai Wah Wu, Jan 10 2023

Formula

a(2*n) = A022998(n), a(1+2*n) = 1 + 2*n.
a(n) = 2*a(n-4) - a(n-8).
From Colin Barker, Mar 19 2017: (Start)
G.f.: x*(1 + x + 3*x^2 + 4*x^3 + 3*x^4 + x^5 + x^6) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = -((-1)^n - (-i)^n - i^n - 7)*n/8, where i = sqrt(-1).
(End)
a(n) = A060819(n) * periodic sequence of length 4: repeat [4, 1, 1, 1].
a(n) = a(n-4) + periodic sequence of length 4: repeat [4, 4, 2, 4].
From Werner Schulte, Jul 08 2018: (Start)
For n > 0, a(n) is multiplicative with a(p^e) = p^e for prime p >= 2 and e >= 0 except a(2^1) = 1.
Dirichlet g.f.: (1 - 1/2^s - 1/2^(2*s-1)) * zeta(s-1).
(End)
a(n) = n*(7 + cos(n*Pi/2) - cos(n*Pi) + cos(3*n*Pi/2))/8. - Wesley Ivan Hurt, Oct 04 2018
E.g.f.: (1/4)*x*(4*cosh(x) - sin(x) + 3*sinh(x)). - Franck Maminirina Ramaharo, Nov 13 2018
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022