cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A284012 a(n) = A284011(A260443(n)) = A284010(A260443(A260443(n))).

Original entry on oeis.org

2, 2, 6, 2, 12, 6, 30, 2, 60, 12, 120, 6, 180, 30, 210, 2, 420, 6, 30, 2, 60, 6, 30, 2, 420, 6, 30, 6, 60, 6, 30, 2, 420, 6, 30, 2, 60, 30, 60, 6, 30, 6, 30, 2, 60, 30, 30, 2, 30, 6, 30, 2, 30, 6, 30, 6, 60, 30, 30, 6, 30, 6, 30, 2, 210, 6, 30, 2, 60, 6, 120, 2, 30, 30, 60, 6, 240, 6, 30, 2, 30, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2017

Keywords

Crossrefs

Differs from A278243 for the first time at n=18, where a(18) = 6, while A278243(18) = 60.

Programs

Formula

A260443 Prime factorization representation of Stern polynomials: a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1).

Original entry on oeis.org

1, 2, 3, 6, 5, 18, 15, 30, 7, 90, 75, 270, 35, 450, 105, 210, 11, 630, 525, 6750, 245, 20250, 2625, 9450, 77, 15750, 3675, 47250, 385, 22050, 1155, 2310, 13, 6930, 5775, 330750, 2695, 3543750, 128625, 1653750, 847, 4961250, 643125, 53156250, 18865, 24806250, 202125, 727650, 143, 1212750, 282975, 57881250, 29645, 173643750, 1414875, 18191250, 1001
Offset: 0

Views

Author

Antti Karttunen, Jul 28 2015

Keywords

Comments

The exponents in the prime factorization of term a(n) give the coefficients of the n-th Stern polynomial. See A125184 and the examples.
None of the terms have prime gaps in their factorization, i.e., all can be found in A073491.
Contains neither perfect squares nor prime powers with exponent > 1. A277701 gives the positions of the terms that are 2*square. - Antti Karttunen, Oct 27 2016
Many of the derived sequences (like A002487) have similar "Fir forest" or "Gaudian cathedrals" style scatter plot. - Antti Karttunen, Mar 21 2017

Examples

			n    a(n)   prime factorization    Stern polynomial
------------------------------------------------------------
0       1   (empty)                B_0(x) = 0
1       2   p_1                    B_1(x) = 1
2       3   p_2                    B_2(x) = x
3       6   p_2 * p_1              B_3(x) = x + 1
4       5   p_3                    B_4(x) = x^2
5      18   p_2^2 * p_1            B_5(x) = 2x + 1
6      15   p_3 * p_2              B_6(x) = x^2 + x
7      30   p_3 * p_2 * p_1        B_7(x) = x^2 + x + 1
8       7   p_4                    B_8(x) = x^3
9      90   p_3 * p_2^2 * p_1      B_9(x) = x^2 + 2x + 1
		

Crossrefs

Same sequence sorted into ascending order: A260442.
Cf. also A048675, A277333 (left inverses).
Cf. A277323, A277324 (bisections), A277200 (even terms sorted), A277197 (first differences), A277198.
Cf. A277316 (values at primes), A277318.
Cf. A023758 (positions of squarefree terms), A101082 (of terms not squarefree), A277702 (positions of records), A277703 (their values).
Cf. A283992, A283993 (number of irreducible, reducible polynomials in range 1 .. n).
Cf. also A206296 (Fibonacci polynomials similarly represented).

Programs

  • Maple
    b:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    a:= proc(n) option remember; `if`(n<2, n+1,
          `if`(irem(n, 2, 'h')=0, b(a(h)), a(h)*a(n-h)))
        end:
    seq(a(n), n=0..56);  # Alois P. Heinz, Jul 04 2024
  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a@ n, {n, 0, 56}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ After Charles R Greathouse IV's code for "ps" in A186891.
    \\ Antti Karttunen, Oct 11 2016
    
  • Python
    from sympy import factorint, prime, primepi
    from functools import reduce
    from operator import mul
    def a003961(n):
        F = factorint(n)
        return 1 if n==1 else reduce(mul, (prime(primepi(i) + 1)**F[i] for i in F))
    def a(n): return n + 1 if n<2 else a003961(a(n//2)) if n%2==0 else a((n - 1)//2)*a((n + 1)//2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017
  • Scheme
    ;; Uses memoization-macro definec:
    (definec (A260443 n) (cond ((<= n 1) (+ 1 n)) ((even? n) (A003961 (A260443 (/ n 2)))) (else (* (A260443 (/ (- n 1) 2)) (A260443 (/ (+ n 1) 2))))))
    ;; A more standalone version added Oct 10 2016, requiring only an implementation of A000040 and the memoization-macro definec:
    (define (A260443 n) (product_primes_to_kth_powers (A260443as_coeff_list n)))
    (define (product_primes_to_kth_powers nums) (let loop ((p 1) (nums nums) (i 1)) (cond ((null? nums) p) (else (loop (* p (expt (A000040 i) (car nums))) (cdr nums) (+ 1 i))))))
    (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
    (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
    

Formula

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1).
Other identities. For all n >= 0:
A001221(a(n)) = A277314(n). [#nonzero coefficients in each polynomial.]
A001222(a(n)) = A002487(n). [When each polynomial is evaluated at x=1.]
A048675(a(n)) = n. [at x=2.]
A090880(a(n)) = A178590(n). [at x=3.]
A248663(a(n)) = A264977(n). [at x=2 over the field GF(2).]
A276075(a(n)) = A276081(n). ["at factorials".]
A156552(a(n)) = A277020(n). [Converted to "unary-binary" encoding.]
A051903(a(n)) = A277315(n). [Maximal coefficient.]
A277322(a(n)) = A277013(n). [Number of irreducible polynomial factors.]
A005361(a(n)) = A277325(n). [Product of nonzero coefficients.]
A072411(a(n)) = A277326(n). [And their LCM.]
A007913(a(n)) = A277330(n). [The squarefree part.]
A000005(a(n)) = A277705(n). [Number of divisors.]
A046523(a(n)) = A278243(n). [Filter-sequence.]
A284010(a(n)) = A284011(n). [True for n > 1. Another filter-sequence.]
A003415(a(n)) = A278544(n). [Arithmetic derivative.]
A056239(a(n)) = A278530(n). [Weighted sum of coefficients.]
A097249(a(n)) = A277899(n).
a(A000079(n)) = A000040(n+1).
a(A000225(n)) = A002110(n).
a(A000051(n)) = 3*A002110(n).
For n >= 1, a(A000918(n)) = A070826(n).
A007949(a(n)) is the interleaving of A000035 and A005811, probably A101979.
A061395(a(n)) = A277329(n).
Also, for all n >= 1:
A055396(a(n)) = A001511(n).
A252735(a(n)) = A061395(a(n)) - 1 = A057526(n).
a(A000040(n)) = A277316(n).
a(A186891(1+n)) = A277318(n). [Subsequence for irreducible polynomials].

Extensions

More linking formulas added by Antti Karttunen, Mar 21 2017

A195017 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} c_k*((-1)^(k-1)).

Original entry on oeis.org

0, 1, -1, 2, 1, 0, -1, 3, -2, 2, 1, 1, -1, 0, 0, 4, 1, -1, -1, 3, -2, 2, 1, 2, 2, 0, -3, 1, -1, 1, 1, 5, 0, 2, 0, 0, -1, 0, -2, 4, 1, -1, -1, 3, -1, 2, 1, 3, -2, 3, 0, 1, -1, -2, 2, 2, -2, 0, 1, 2, -1, 2, -3, 6, 0, 1, 1, 3, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, 5, -4, 2, 1, 0, 2, 0, -2, 4, -1, 0, -2, 3, 0, 2, 0, 4, 1, -1, -1, 4, -1, 1, 1, 2, -1
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2012

Keywords

Comments

Let p(n,x) be the completely additive polynomial-valued function such that p(1,x) = 0 and p(prime(n),x) = x^(n-1), like is defined in A206284 (although here we are not limited to just irreducible polynomials). Then a(n) is the value of the polynomial encoded in such a manner by n, when it is evaluated at x=-1. - The original definition rewritten and clarified by Antti Karttunen, Oct 03 2018
Positions of 0 give the values of n for which the polynomial p(n,x) is divisible by x+1. For related sequences, see the Mathematica section.
Also the number of odd prime indices of n minus the number of even prime indices of n (both counted with multiplicity), where a prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Oct 24 2023

Examples

			The sequence can be read from a list of the polynomials:
  p(n,x)      with x = -1, gives a(n)
------------------------------------------
  p(1,x) = 0           0
  p(2,x) = 1x^0        1
  p(3,x) = x          -1
  p(4,x) = 2x^0        2
  p(5,x) = x^2         1
  p(6,x) = 1+x         0
  p(7,x) = x^3        -1
  p(8,x) = 3x^0        3
  p(9,x) = 2x         -2
  p(10,x) = x^2 + 1    2.
(The list runs through all the polynomials whose coefficients are nonnegative integers.)
		

Crossrefs

For other evaluation functions of such encoded polynomials, see A001222, A048675, A056239, A090880, A248663.
Zeros are A325698, distinct A325700.
For sum instead of count we have A366749 = A366531 - A366528.
A000009 counts partitions into odd parts, ranked by A066208.
A035363 counts partitions into even parts, ranked by A066207.
A112798 lists prime indices, reverse A296150, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.

Programs

  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 200;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
    == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
    Table[p[n, x] /. x -> 0, {n, 1, z/2}]   (* A007814 *)
    Table[p[2 n, x] /. x -> 0, {n, 1, z/2}] (* A001511 *)
    Table[p[n, x] /. x -> 1, {n, 1, z}]     (* A001222 *)
    Table[p[n, x] /. x -> 2, {n, 1, z}]     (* A048675 *)
    Table[p[n, x] /. x -> 3, {n, 1, z}]     (* A090880 *)
    Table[p[n, x] /. x -> -1, {n, 1, z}]    (* A195017 *)
    z = 100; Sum[-(-1)^k IntegerExponent[Range[z], Prime[k]], {k, 1, PrimePi[z]}] (* Friedjof Tellkamp, Aug 05 2024 *)
  • PARI
    A195017(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * (-1)^(1+primepi(f[i,1])))); } \\ Antti Karttunen, Oct 03 2018

Formula

Totally additive with a(p^e) = e * (-1)^(1+PrimePi(p)), where PrimePi(n) = A000720(n). - Antti Karttunen, Oct 03 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} = (-1)^(primepi(p)+1)/(p-1) = Sum_{k>=1} (-1)^(k+1)/A006093(k) = A078437 + Sum_{k>=1} (-1)^(k+1)/A036689(k) = 0.6339266524059... . - Amiram Eldar, Sep 29 2023
a(n) = A257991(n) - A257992(n). - Gus Wiseman, Oct 24 2023
a(n) = -Sum_{k=1..pi(n)} (-1)^k * valuation(n, prime(k)). - Friedjof Tellkamp, Aug 05 2024

Extensions

More terms, name changed and example-section edited by Antti Karttunen, Oct 03 2018

A206284 Numbers that match irreducible polynomials over the nonnegative integers.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 28, 30, 36, 40, 42, 44, 46, 48, 50, 52, 54, 56, 60, 66, 68, 70, 72, 76, 80, 81, 88, 92, 96, 98, 100, 102, 104, 108, 112, 114, 116, 118, 120, 124, 126, 130, 132, 136, 140, 144, 148, 150, 152, 154, 160, 162, 164, 168, 170
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2012

Keywords

Comments

Starting with 1, which encodes 0-polynomial, each integer m encodes (or "matches") a polynomial p(m,x) with nonnegative integer coefficients determined by the prime factorization of m. Write m = prime(1)^e(1) * prime(2)^e(2) * ... * prime(k)^e(k); then p(m,x) = e(1) + e(2)x + e(3)x^2 + ... + e(k)x^k.
Identities:
p(m*n,x) = p(m,x) + p(n,x),
p(m*n,x) = p(gcd(m,n),x) + p(lcm(m,n),x),
p(m+n,x) = p(gcd(m,n),x) + p((m+n)/gcd(m,n),x), so that if A003057 is read as a square matrix, then
p(A003057,x) = p(A003989,x) + p(A106448,x).
Apart from powers of 3, all terms are even. - Charles R Greathouse IV, Feb 11 2012
Contains 2*p^m and p*2^m if p is an odd prime and m is in A052485. - Robert Israel, Oct 09 2016

Examples

			Polynomials having nonnegative integer coefficients are matched to the positive integers as follows:
   m    p(m,x)    irreducible
  ---------------------------
   1    0         no
   2    1         no
   3    x         yes
   4    2         no
   5    x^2       no
   6    1+x       yes
   7    x^3       no
   8    3         no
   9    2x        yes
  10    1+x^2     yes
		

Crossrefs

Cf. A052485, A206285 (complement), A206296.
Positions of ones in A277322.
Terms of A277318 form a proper subset of this sequence. Cf. also A277316.
Other sequences about factorization in the same polynomial ring: A206442, A284010.
Polynomial multiplication using the same encoding: A297845.

Programs

  • Maple
    P:= n -> add(f[2]*x^(numtheory:-pi(f[1])-1), f =  ifactors(n)[2]):
    select(irreduc @ P, [$1..200]); # Robert Israel, Oct 09 2016
  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 400;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
    == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
    Table[p[n, x], {n, 1, z/4}]
    v = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
    AppendTo[v, n]], {n, z/2}]; v  (* A206284 *)
    Complement[Range[200], v]      (* A206285 *)
  • PARI
    is(n)=my(f=factor(n));polisirreducible(sum(i=1, #f[,1], f[i,2]*'x^primepi(f[i,1]-1))) \\ Charles R Greathouse IV, Feb 12 2012

Extensions

Introductory comments edited by Antti Karttunen, Oct 09 2016 and Peter Munn, Aug 13 2022

A284011 a(n) = least natural number with the same prime signature Stern polynomial B(n,x) has when it is factored over Z.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 2, 6, 8, 12, 2, 30, 2, 32, 6, 6, 6, 36, 2, 6, 6, 24, 2, 30, 2, 12, 12, 6, 2, 48, 4, 6, 6, 12, 2, 24, 2, 24, 6, 6, 2, 60, 2, 6, 30, 64, 2, 30, 2, 12, 6, 30, 2, 72, 2, 6, 12, 12, 2, 30, 2, 48, 6, 6, 2, 60, 6, 6, 6, 24, 2, 60, 2, 12, 6, 6, 2, 96, 2, 12, 12, 12, 2, 30, 2, 24, 30, 6, 2, 72
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2017

Keywords

Examples

			B_9(x) = x^2 + 2x + 1, which factorizes as (x + 1)^2, thus a(9) = 2^2 = 4.
		

Crossrefs

Cf. A046523, A125184, A186891 (positions of terms <= 2), A260443, A277013, A284010, A284012.
Cf. also A278233, A278243.
Differs from A046523 for the first time at n=25, where a(25) = 2, while A046523(25) = 4.

Programs

  • PARI
    \\ After Charles R Greathouse IV's code in A046523 and A186891:
    ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
    A284011(n) = { my(p=0, f=vecsort(factor(ps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }
    for(n=1, 16384, write("b284011.txt", n, " ", A284011(n)));

Formula

a(1) = 1 (by convention), and for n > 1, a(n) = A284010(A260443(n)).

A304751 Filter sequence: Restricted growth sequence transform of function that gives the least natural number with the same prime signature that (0,1)-polynomial encoded in the binary expansion of n has when it is factored over Q.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 6, 4, 4, 2, 9, 2, 4, 6, 6, 2, 8, 2, 10, 4, 4, 4, 11, 2, 4, 4, 9, 2, 8, 2, 6, 8, 4, 2, 12, 4, 4, 4, 6, 2, 11, 2, 9, 4, 4, 2, 11, 2, 4, 8, 13, 4, 8, 2, 6, 2, 8, 2, 14, 2, 4, 8, 6, 2, 8, 2, 12, 2, 4, 2, 11, 4, 4, 2, 9, 2, 15, 2, 6, 4, 4, 4, 16, 2, 8, 6, 6, 2, 8, 2, 9, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2018

Keywords

Crossrefs

Cf. A206719, A206074 (gives the positions of 2's), A257000.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux304751(n) = { my(p=0, f=vecsort((factor(Pol(binary(n)))[, 2]), , 4)); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }
    v304751 = rgs_transform(vector(up_to,n,Aux304751(n)));
    A304751(n) = v304751[n];

Formula

For all i, j: a(i) = a(j) => A206719(i) = A206719(j).
For all i, j: a(i) = a(j) => A257000(i) = A257000(j).

A305899 Filter sequence related to factorization ("prime") signatures of Stern polynomials when factored over Z.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 2, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 4, 4, 6, 2, 8, 2, 8, 4, 4, 2, 13, 2, 4, 9, 14, 2, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 2, 9, 2, 12, 4, 4, 2, 13, 4, 4, 4, 8, 2, 13, 2, 6, 4, 4, 2, 16, 2, 6, 6, 6, 2, 9, 2, 8, 9
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2018

Keywords

Comments

Restricted growth sequence transform of A284011.

Crossrefs

Cf. also A304751.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); };
    A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); }
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
    A284011(n) = A284010(A260443(n));
    v305899 = rgs_transform(vector(up_to, n, A284011(n)));
    A305899(n) = v305899[n];

A305898 Filter sequence combining prime signature of n (A046523) and similar signature (A284011) obtained when Stern polynomial B(n,x) is factored over Z.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 9, 4, 5, 6, 2, 10, 2, 11, 4, 4, 4, 12, 2, 4, 4, 8, 2, 10, 2, 6, 6, 4, 2, 13, 3, 14, 4, 6, 2, 8, 15, 8, 4, 4, 2, 16, 2, 4, 17, 18, 15, 10, 2, 6, 4, 10, 2, 19, 2, 4, 6, 6, 15, 10, 2, 13, 20, 4, 2, 16, 4, 4, 4, 8, 2, 16, 15, 6, 4, 4, 15, 21, 2, 6, 6, 22, 2, 10, 2, 8, 10
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A046523(n), A284011(n)].
For all i, j: a(i) = a(j) => A305892(i) = A305892(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); };
    A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); }
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
    A284011(n) = A284010(A260443(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux305898(n) = [A046523(n), A284011(n)];
    v305898 = rgs_transform(vector(up_to, n, Aux305898(n)));
    A305898(n) = v305898[n];
Showing 1-8 of 8 results.