cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000360 Distribution of nonempty triangles inside a fractal rep-4-tile.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 0, 2, 2, 2, 1, 3, 1, 2, 1, 2, 2, 4, 1, 4, 3, 3, 1, 4, 2, 4, 2, 3, 2, 3, 0, 3, 3, 4, 2, 6, 3, 5, 2, 5, 4, 7, 2, 6, 4, 4, 1, 5, 3, 6, 3, 6, 4, 6, 1, 5, 4, 5, 2, 5, 2, 3, 1, 3, 3, 6, 2, 7, 5, 6, 2, 8, 5, 9, 4, 8, 5, 7, 1, 7, 6, 9, 4, 11, 6, 9, 3, 8, 6, 10, 3, 8, 5, 5, 1, 6, 4, 8, 4, 9, 6, 9, 2
Offset: 0

Views

Author

Keywords

Comments

a(n) = Running count of congruent nonempty triangles along lines perpendicular to the base of the Gosper-Lafitte triangle.
Also, a(n) = Sum of the coefficients of the terms with an even exponent in the Stern polynomial B(n+1,t), or in other words, the sum of the even-indexed terms (the leftmost is at index 0) of the irregular triangle A125184, starting from its second row. - Antti Karttunen, Apr 20 2017
Back in May 1995, it was proved that a(n) = modulo 3 mapping, (+1,-1,+0)/2, of the Stern-Brocot sequence A002487, dropping its 1st term. - M. Jeremie Lafitte (Levitas), Apr 23 2017

References

  • M. J. Lafitte, Sur l'Effet Noah en Géométrie, rapport à l'INPI, mars 1995.

Crossrefs

Cf. also mutual recurrence pair A287729, A287730.

Programs

  • Haskell
    import Data.List (transpose)
    a000360 n = a000360_list !! n
    a000360_list = 1 : concat (transpose
       [zipWith (+) a000360_list $ drop 2 a057078_list,
        zipWith (+) a000360_list $ tail a000360_list])
    -- Reinhard Zumkeller, Mar 22 2013
    (Scheme, with memoization-macro definec):
    (define (A000360 n) (A000360with_prep_0 (+ 1 n)))
    (definec (A000360with_prep_0 n) (cond ((<= n 1) n) ((even? n) (A284556 (/ n 2))) (else (+ (A000360with_prep_0 (/ (- n 1) 2)) (A000360with_prep_0 (/ (+ n 1) 2))))))
    (definec (A284556 n) (cond ((<= n 1) 0) ((even? n) (A000360with_prep_0 (/ n 2))) (else (+ (A284556 (/ (- n 1) 2)) (A284556 (/ (+ n 1) 2))))))
    ;; Antti Karttunen, Apr 07 2017
    
  • Mathematica
    a[0] = 1; a[n_?EvenQ] := a[n] = a[n/2] + a[n/2-1]; a[n_?OddQ] := a[n] = a[(n-1)/2] - Mod[(n-1)/2-1, 3] + 1; Table[a[n], {n, 0, 103}] (* Jean-François Alcover, Jan 20 2015, after Ralf Stephan *)
  • PARI
    a(n) = if(n==0, 1, if(n%2, a((n - 1)/2) - ((n - 1)/2 - 1)%3 + 1, a(n/2) + a(n/2 - 1))); \\ Indranil Ghosh, Apr 20 2017

Formula

a(3n) = (A002487(3n+1) + 1)/2, a(3n+1) = (A002487(3n+2) - 1)/2, a(3n+2) = A002487(3n+3)/2. - M. Jeremie Lafitte (Levitas), Apr 23 2017
a(0) = 1, a(2n) = a(n) + a(n-1), a(2n+1) = a(n) + 1 - (n-1 mod 3). - Ralf Stephan, Oct 05 2003; Note: according to Ralf Stephan, this formula was found empirically. It follows from that found for the Stern-Brocot sequence A002487 and the first formula. - Antti Karttunen, Apr 21 2017, M. Jeremie Lafitte (Levitas), Apr 23 2017
From Antti Karttunen, Apr 07 2017: (Start)
Ultimately equivalent to the above formulae, we have:
a(n) = A001222(A284553(1+n)).
a(n) = A002487(1+n) - A284556(1+n).
a(n) = b(1+n), with b from a mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1), c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1). [c(n) = A284556(n), b(n)+c(n) = A002487(n).]
(End)

Extensions

More terms from David W. Wilson, Aug 30 2000
Original relation to the Stern-Brocot sequence A002487 reformulated by M. Jeremie Lafitte (Levitas), Apr 23 2017

A284563 a(n) = A247503(A277324(n)).

Original entry on oeis.org

2, 2, 2, 10, 10, 10, 50, 10, 10, 250, 250, 50, 250, 250, 50, 110, 110, 250, 6250, 1250, 1250, 31250, 6250, 550, 2750, 6250, 6250, 13750, 2750, 2750, 6050, 110, 110, 30250, 68750, 13750, 343750, 781250, 156250, 151250, 151250, 781250, 19531250, 1718750, 343750, 8593750, 756250, 6050, 30250, 756250, 1718750, 3781250, 3781250, 8593750, 18906250, 151250
Offset: 0

Views

Author

Antti Karttunen, Mar 29 2017

Keywords

Crossrefs

Odd bisection of A284553.

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &@ a[2 n + 1], {n, 0, 55}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A284563(n) = A284553(n+n+1); \\ Other code as in A284553.
    
  • Scheme
    (define (A284563 n) (A247503 (A277324 n)))
    (define (A284563 n) (A284553 (+ n n 1)))

Formula

a(n) = A247503(A277324(n)).
a(n) = A284553((2*n)+1).
Other identities. For all n >= 0:
A001222(a(n)) = A284565(n).

A284554 Prime factorization representation of Stern polynomials B(n,x) with only the odd powers of x present: a(n) = A248101(A260443(n)).

Original entry on oeis.org

1, 1, 3, 3, 1, 9, 3, 3, 7, 9, 3, 27, 7, 9, 21, 21, 1, 63, 21, 27, 49, 81, 21, 189, 7, 63, 147, 189, 7, 441, 21, 21, 13, 63, 21, 1323, 49, 567, 1029, 1323, 7, 3969, 1029, 1701, 343, 3969, 147, 1323, 13, 441, 1029, 9261, 49, 27783, 1029, 1323, 91, 3087, 147, 9261, 91, 441, 273, 273, 1, 819, 273, 1323, 637, 27783, 1029, 64827, 91, 27783, 50421, 583443, 343
Offset: 0

Views

Author

Antti Karttunen, Mar 29 2017

Keywords

Comments

a(n) = Prime factorization representation of Stern polynomials B(n,x) where the coefficients of even powers of x (including the constant term) are replaced by zeros. In other words, only the terms with odd powers of x are present. See the examples.

Examples

			n A260443(n)                      Stern            With even powers
             prime factorization  polynomial       of x cleared  -> a(n)
------------------------------------------------------------------------
0       1    (empty)              B_0(x) = 0                    0  |  1
1       2    p_1                  B_1(x) = 1                    0  |  1
2       3    p_2                  B_2(x) = x                    x  |  3
3       6    p_2 * p_1            B_3(x) = x + 1                x  |  3
4       5    p_3                  B_4(x) = x^2                  0  |  1
5      18    p_2^2 * p_1          B_5(x) = 2x + 1              2x  |  9
6      15    p_3 * p_2            B_6(x) = x^2 + x              x  |  3
7      30    p_3 * p_2 * p_1      B_7(x) = x^2 + x + 1          x  |  3
8       7    p_4                  B_8(x) = x^3                x^3  |  7
9      90    p_3 * p_2^2 * p_1    B_9(x) = x^2 + 2x + 1        2x  |  9
10     75    p_3^2 * p_2          B_10(x) = 2x^2 + x            x  |  3
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a@ n, {n, 0, 76}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
    A248101(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1])+1) % 2; ); factorback(f); } \\ After Michel Marcus
    A284554(n) = A248101(A260443(n));
    
  • Scheme
    (define (A284554 n) (A248101 (A260443 n)))

Formula

a(0) = a(1) = 1, a(2n) = A003961(A284553(n)), a(2n+1) = a(n)*a(n+1).
Other identities. For all n >= 0:
a(n) = A248101(A260443(n)).
a(n) = A260443(n) / A284553(n).
a(n) = A064989(A284553(2n)).
A001222(a(n)) = A284556(n).
Showing 1-3 of 3 results.