cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001501 Number of n X n 0-1 matrices with all column and row sums equal to 3.

Original entry on oeis.org

1, 0, 0, 1, 24, 2040, 297200, 68938800, 24046189440, 12025780892160, 8302816499443200, 7673688777463632000, 9254768770160124288000, 14255616537578735986867200, 27537152449960680597739468800, 65662040698002721810659005184000
Offset: 0

Views

Author

Keywords

Comments

Also, for n >= 3, number of bicubical graphs on 2n labeled nodes of two colors [Read, 1958, 1971] - N. J. A. Sloane, Sep 08 2014
Also number of ways to arrange 3n rooks on an n X n chessboard, with no more than 3 rooks in each row and column (no 4 in a line). - Vaclav Kotesovec, Aug 03 2013

Examples

			G.f. = 1 + x^3 + 24*x^4 + 2040*x^5 + 297200*x^6 + 68938800*x^7 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 236, P(n,3).
  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Example 1.1.3, page 2, f(n).
  • M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.

Crossrefs

Cf. A001499. Column 3 of A008300. Row sums of A284990.

Programs

  • Maple
    a:= n-> n!^2/6^n *add(add((-1)^b *2^a *3^b *(3*n-3*a-2*b)!/
            (a! *b! *(n-a-b)!^2 *6^(n-a-b)), b=0..n-a), a=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 20 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, (n-1)*(n-2)/2,
          n*(n-1)*(9*(3*n^2-5*n+4)*a(n-1)+(3*n-6)*(3*n+1)*
          (n-1)*a(n-2)+(9*n^2-30*n+13)*(n-1)*(n-2)^2*a(n-3)
          -(3*n-2)*(n-1)*(n-2)^2*(n-3)^2*a(n-4))/(36*n-60))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 13 2017
  • Mathematica
    Table[6^(-n) Total[Map[(-1)^#[[2]] n!^2 (#[[2]] + 3 #[[3]])! 2^#[[1]] 3^#[[2]]/(#[[1]]! #[[2]]! #[[3]]!^2 6^#[[3]]) &, Compositions[n, 3]]], {n, 0, 20}] (* Geoffrey Critzer, Mar 19 2011 *)
    a[n_] := n!^2*Sum[2^(2k-n)*3^(k-n)*(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 07 2018 *)
  • PARI
    {a(n) = local(k); if( n<0, 0, n!^2 * sum(j=0, n, sum(i=0, n-j, if(1, k=n-i-j; (j + 3*k)! / (3^i * 36^k * i! * k!^2))) / (j! * (-2)^j)))}; /* Michael Somos, May 28 2002 */

Formula

a(n) = n!^2/6^n * Sum_{a=0..n} Sum_{b=0..n-a} (-1)^b * 2^a * 3^b * (3*n-3*a-2*b)! / (a! * b! * (n-a-b)!^2 * 6^(n-a-b)). - Shanzhen Gao, Feb 19 2010
D-finite with recurrence: 12*(3*n-5)*a(n) = 9*n*(3*n^2-5*n+4)*(n-1)*a(n-1) + 3*(n-2)*n*(3*n+1)*(n-1)^2*a(n-2) + (n-2)^2*n*(9*n^2-30*n+13)*(n-1)^2*a(n-3) - (n-3)^2*(n-2)^2*n*(3*n-2)*(n-1)^2*a(n-4). - Vaclav Kotesovec, Aug 03 2013
a(n) ~ sqrt(6*Pi) * (3/4)^n * n^(3*n+1/2) / exp(3*n+2). - Vaclav Kotesovec, Aug 03 2013

Extensions

Additional comments from Michael Somos, May 28 2002

A284989 Triangle T(n,k) read by rows: the number of n X n {0,1} matrices with trace k where each row sum and each column sum is 2.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 9, 24, 24, 24, 9, 216, 540, 610, 420, 210, 44, 7570, 18000, 20175, 13720, 6300, 1920, 265, 357435, 829920, 909741, 617610, 284235, 91140, 19005, 1854, 22040361, 50223600, 54295528, 36663312, 17072790, 5679184, 1337280, 203952, 14833
Offset: 0

Views

Author

R. J. Mathar, Apr 07 2017

Keywords

Examples

			0:         1
1:         0        0
2:         0        0        1
3:         1        0        3        2
4:         9       24       24       24        9
5:       216      540      610      420      210      44
6:      7570    18000    20175    13720     6300    1920     265
7:    357435   829920   909741   617610   284235   91140   19005   1854
8:  22040361 50223600 54295528 36663312 17072790 5679184 1337280 203952 14833
		

Crossrefs

Cf. A001499 (row sums), A000166 (diagonal), A007107 (column 0).

Programs

  • PARI
    P(n, t='t) = {
      my(z=vector(n, k, eval(Str("z", k))),
         s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
         f=vector(n, k, t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
      for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
      for (k=1, n, g=polcoef(g, 2, z[k]));
      g;
    };
    seq(N) = concat([[1], [0, 0], [0, 0, 1]], apply(n->Vec(P(n)), [3..N]));
    concat(seq(8)) \\ Gheorghe Coserea, Dec 21 2018

Formula

Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n, P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk. Then P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k), n >= 3. - Gheorghe Coserea, Dec 21 2018

A007105 Number of labeled Eulerian 3-regular digraphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 1, 44, 7570, 1975560, 749649145, 399035751464, 289021136349036, 277435664056527360, 345023964977303838105, 545099236551025860229460, 1075595203804151695555622446
Offset: 0

Views

Author

Keywords

Comments

Apparently this counts the binary variant (all elements in {0,1}) of A001500 with zero trace. - R. J. Mathar, May 16 2021

References

  • R. W. Robinson, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A364068 Triangle T(n,k) read by rows: Number of traceless binary n X n matrices with all row and column sums equal to k, 1<=k<=n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 9, 9, 1, 0, 44, 216, 44, 1, 0, 265, 7570, 7570, 265, 1, 0, 1854, 357435, 1975560, 357435, 1854, 1, 0, 14833, 22040361, 749649145, 749649145, 22040361, 14833, 1, 0, 133496, 1721632024
Offset: 1

Views

Author

R. J. Mathar, Jul 04 2023

Keywords

Examples

			    0
    1        0
    2        1         0
    9        9         1      0
   44      216        44      1    0
  265     7570      7570    265    1 0
 1854   357435   1975560 357435 1854 1 0
14833 22040361 749649145
		

Crossrefs

Cf. A000166 (k=1), A007107 (k=2), A284989 (see 1st col), A284990 (see 1st col, k=3), A007105 (k=3?), A284991 (see 1st col, k=4), A008300 (any trace)

Formula

T(n,n)=0. (k=n would require a 1 on the diagonal)
T(n,n-1)=1. (1 at all entries but the diagonal)
T(n,n-k) = T(n,k-1). (Flip entries 0<->1 and erase diagonal) - R. J. Mathar, Jul 26 2023
Showing 1-4 of 4 results.