A285009 Subset sums (see Comments).
9, 17, 28, 42, 59, 79, 102, 128, 157, 189, 224, 262, 303, 347, 394, 444, 497, 553, 612, 674, 739, 807, 878, 952, 1029, 1109, 1192, 1278, 1367, 1459, 1554, 1652, 1753, 1857, 1964, 2074, 2187, 2303, 2422, 2544, 2669, 2797, 2928, 3062, 3199, 3339, 3482, 3628, 3777, 3929, 4084
Offset: 3
Examples
For n = 3, the set is S = {1,2,3,4,5,6} and the subsets are S1 = {1,2,6}, S2 = {1,3,5} and S3 = {2,3,4}. Therefore, a(3) = 9.
References
- a(4) is mentioned in: Gary Gruber, "The World's 200 Hardest Brain Teasers", Sourcebooks, 2010, p. 55.
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- Terrel Trotter, Normal Magic Triangles of Order n, Journal of Recreational Mathematics Vol. 5, No. 1, 1972, pp. 28-32.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A005449.
Programs
-
Mathematica
Table[(8+(n-2)*(3 *n+1))/2,{n,3,53}] Drop[CoefficientList[Series[x^3*(9 - 10*x + 4*x^2) / (1 - x)^3 , {x, 0, 60}], x], 3] (* Indranil Ghosh, Apr 08 2017 *)
-
PARI
Vec(x^3*(9 - 10*x + 4*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Apr 08 2017
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 5.
a(n) = (8 + (n-2)*(3*n+1))/2, for n > 2.
G.f.: x^3*(9 - 10*x + 4*x^2) / (1 - x)^3. - Colin Barker, Apr 08 2017
E.g.f.: (1/2)*exp(x)*(3*x^2 - 2*x + 6) - 2*x*(x + 1) - 3. - Indranil Ghosh, Apr 08 2017; corrected by Ilya Gutkovskiy, Apr 10 2017
a(n) = A005449(n-1) + 2. - Hugo Pfoertner, Feb 18 2021
Comments