A286879 Number of minimal dominating sets in the n-Andrásfai graph.
2, 5, 28, 66, 140, 272, 489, 828, 1339, 2088, 3160, 4662, 6726, 9512, 13211, 18048, 24285, 32224, 42210, 54634, 69936, 88608, 111197, 138308, 170607, 208824, 253756, 306270, 367306, 437880, 519087, 612104, 718193, 838704, 975078, 1128850, 1301652, 1495216, 1711377
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Andrásfai Graph
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (6,-15, 20,-15,6,-1).
Programs
-
Magma
[2,5,28] cat [(3*n-1)*(n^4-13*n^3+164*n^2-572*n+ 960)/120: n in [4..40]]; // Vincenzo Librandi, Sep 03 2017
-
Maple
A286879:=n->(3*n - 1)*(n^4 - 13*n^3 + 164*n^2 - 572*n + 960)/120: 2,5,28,seq(A286879(n), n=4..100); # Wesley Ivan Hurt, Nov 30 2017
-
Mathematica
Table[Piecewise[{{2, n == 1}, {5, n == 2}, {28, n == 3}}, (3 n - 1) (n^4 - 13 n^3 + 164 n^2 - 572 n + 960)/120], {n, 20}] Join[{2, 5, 28}, LinearRecurrence[{6, -15, 20, -15, 6, -1}, {66, 140, 272, 489, 828, 1339}, 20]] (* Eric W. Weisstein, Aug 21 2017 *) CoefficientList[Series[(2 - 7 x + 28 x^2 - 67 x^3 + 94 x^4 - 75 x^5 + 29 x^6 + x^7 - 2 x^8)/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 21 2017 *)
Formula
From Eric W. Weisstein, Aug 21 2017: (Start)
a(n) = (3*n - 1)*(n^4 - 13*n^3 + 164*n^2 - 572*n + 960)/120 for n > 3.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 9.
G.f.: (x (2 - 7 x + 28 x^2 - 67 x^3 + 94 x^4 - 75 x^5 + 29 x^6 + x^7 - 2 x^8))/(-1 + x)^6.
(End)
Extensions
a(10)-a(20) from Andrew Howroyd, Aug 19 2017
a(21) and higher from Eric W. Weisstein, Aug 21 2017