A373949 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of k.
1, 0, 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 2, 4, 0, 1, 0, 4, 4, 7, 0, 1, 1, 5, 6, 5, 14, 0, 1, 0, 6, 10, 10, 14, 23, 0, 1, 1, 6, 14, 12, 29, 26, 39, 0, 1, 0, 9, 16, 19, 40, 54, 46, 71, 0, 1, 1, 8, 22, 22, 64, 82, 96, 92, 124, 0, 1, 0, 10, 26, 30, 82, 137, 144, 204, 176, 214
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 0 3 0 1 1 2 4 0 1 0 4 4 7 0 1 1 5 6 5 14 0 1 0 6 10 10 14 23 0 1 1 6 14 12 29 26 39 0 1 0 9 16 19 40 54 46 71 0 1 1 8 22 22 64 82 96 92 124 0 1 0 10 26 30 82 137 144 204 176 214 0 1 1 11 32 31 121 186 240 331 393 323 378 Row n = 6 counts the following compositions: . (111111) (222) (33) (3111) (411) (6) (2211) (1113) (114) (51) (1122) (1221) (1311) (15) (21111) (12111) (1131) (42) (11112) (11211) (2112) (24) (11121) (141) (321) (312) (231) (213) (132) (123) (2121) (1212) For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,4).
Links
- John Tyler Rascoe, Rows n = 0..130, flattened
Crossrefs
Column k = n is A003242 (anti-runs or compressed compositions).
Row-sums are A011782.
Same as A373951 with rows reversed.
Column k = 3 is A373952.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==k&]], {n,0,10},{k,0,n}]
-
PARI
T_xy(row_max) = {my(N=row_max+1, x='x+O('x^N), h=1/(1-sum(i=1,N, (y^i*x^i)/(1+x^i*(y^i-1))))); vector(N, n, Vecrev(polcoeff(h, n-1)))} T_xy(13) \\ John Tyler Rascoe, Mar 20 2025
Formula
G.f.: 1/(1 - Sum_{i>0} (y^i * x^i)/(1 + x^i * (y^i - 1))). - John Tyler Rascoe, Mar 20 2025
Comments