cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286033 a(n) = binomial(2*n-2, n-1) + (-1)^n.

Original entry on oeis.org

0, 3, 5, 21, 69, 253, 923, 3433, 12869, 48621, 184755, 705433, 2704155, 10400601, 40116599, 155117521, 601080389, 2333606221, 9075135299, 35345263801, 137846528819, 538257874441, 2104098963719, 8233430727601, 32247603683099, 126410606437753, 495918532948103
Offset: 1

Views

Author

Peter Luschny, May 13 2017

Keywords

Comments

An odd prime p divides a((p+1)/2) which gives A163210.

Crossrefs

Programs

  • Magma
    [Binomial(2*n-2, n-1) + (-1)^n: n in [1..30]]; // G. C. Greubel, Jul 14 2024
    
  • Maple
    a := n -> binomial(2*n-2, n-1) + (-1)^n: seq(a(n), n=1..27);
  • Mathematica
    a[n_] := Binomial[2n-2, n-1] + (-1)^n; a[Range[1,27]]
  • Maxima
    a(n):=-sum((-1)^k*binomial(2*n,n-k)*(fib(2*k+1)+fib(2*k-1)),k,1,n); /* Vladimir Kruchinin, Jan 18 2025 */
  • PARI
    a(n) = binomial(2*n-2, n-1) + (-1)^n \\ David A. Corneth, May 13 2017
    
  • SageMath
    def A286033(n): return binomial(2*n-2, n-1) + (-1)^n
    [A286033(n) for n in range(1,31)] # G. C. Greubel, Jul 14 2024
    

Formula

a(n) = A000984(n-1) + A033999(n). - David A. Corneth, May 13 2017
G.f.: -1 + x/sqrt(1 - 4*x) + 1/(1 + x). - Ilya Gutkovskiy, May 13 2017
D-finite with recurrence: -(n-1)*a(n) +2*(n-1)*a(n-1) +(7*n-17)*a(n-2) +2*(2*n-7)*a(n-3)=0. - R. J. Mathar, Jan 27 2020
a(n) = Sum_{k=1..n} (-1)^(k-1)*binomial(2*n, n-k)*A000032(2*k). - Vladimir Kruchinin, Jan 18 2025