cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A028331 Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2.

Original entry on oeis.org

6, 8, 20, 10, 30, 12, 70, 42, 14, 112, 56, 16, 252, 168, 72, 18, 420, 240, 90, 20, 924, 660, 330, 110, 22, 1584, 990, 440, 132, 24, 3432, 2574, 1430, 572, 156, 26, 6006, 4004, 2002, 728, 182, 28, 12870, 10010, 6006, 2730, 910, 210, 30, 22880, 16016
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  .;
  .,  x,  .;
  .,  .,  6,  .;
  .,  .,  x,  8,  .;
  .,  .,  ., 20, 10,   .;
  .,  .,  .,  x, 30,  12,   .;
  .,  .,  .,  ., 70,  42,  14,    .;
  .,  .,  .,  .,  x, 112,  56,   16,   .;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   .;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   .;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  .;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, .;
As an irregular triangle:
    6;
    8;
   20,  10;
   30,  12;
   70,  42,  14;
  112,  56,  16;
  252, 168,  72,  18;
  420, 240,  90,  20;
  924, 660, 330, 110, 22;
		

Crossrefs

Programs

  • Magma
    [2*Binomial(n+3,k): k in [Floor((n+5)/2)..n+2], n in [0..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+3, k+2 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n+1,k) for k in range(((n+3)//2), n+1)] for n in range(21)]) # G. C. Greubel, Jul 14 2024

Formula

From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+3, k+2 + floor((n+1)/2)).
Sum_{k=0..floor(n/2)} T(n, k) = A272514(n+3).
Sum_{k=0..n} (-1)^k*T(2*n, k) = 2*A286033(n+2).
Sum_{k=0..n} (-1)^k*T(2*n+1, k) = binomial(2*n+4, n+2) + 2*(-1)^n.
(End)

Extensions

More terms from James Sellers

A124051 Quasi-mirror of A062196 formatted as a triangular array.

Original entry on oeis.org

3, 6, 8, 10, 30, 15, 15, 80, 90, 24, 21, 175, 350, 210, 35, 28, 336, 1050, 1120, 420, 48, 36, 588, 2646, 4410, 2940, 756, 63, 45, 960, 5880, 14112, 14700, 6720, 1260, 80, 55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99, 66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120
Offset: 0

Views

Author

Zerinvary Lajos, Nov 03 2006

Keywords

Examples

			Triangle begins as:
   3;
   6,    8;
  10,   30,    15;
  15,   80,    90,    24;
  21,  175,   350,   210,     35;
  28,  336,  1050,  1120,    420,     48;
  36,  588,  2646,  4410,   2940,    756,     63;
  45,  960,  5880, 14112,  14700,   6720,   1260,    80;
  55, 1485, 11880, 38808,  58212,  41580,  13860,  1980,   99;
  66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120;
		

Crossrefs

Columns k: A000217(n+2) (k=0), A002417(n+1) (k=1), A001297(n) (k=2), A105946(n-2) (k=3), A105947(n-3) (k=4), A105948(n-4) (k=5), A107319(n-5) (k=6).
Diagonals: A005563(n+1) (k=n), A033487(n) (k=n-1), A027790(n) (k=n-2), A107395(n-3) (k=n-3), A107396(n-4) (k=n-4), A107397(n-5) (k=n-5), A107398(n-6) (k=n-6), A107399(n-7) (k=n-7).
Sums: A322938(n+1) (row).

Programs

  • Magma
    A124051:= func< n,k | Binomial(n+1,n-k+1)*Binomial(n+3,n-k+1) >;
    [A124051(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2025
    
  • Maple
    for n from 0 to 10 do seq(binomial(n,i-1)*binomial(n+2,n+1-i), i=1..n ) od;
  • Mathematica
    A124051[n_, k_]:= Binomial[n+1,n-k+1]*Binomial[n+3,n-k+1];
    Table[A124051[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2025 *)
  • SageMath
    def A124051(n,k): return binomial(n+1,n-k+1)*binomial(n+3,n-k+1)
    print(flatten([[A124051(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 07 2025

Formula

From G. C. Greubel, Feb 07 2025: (Start)
T(n, k) = binomial(n+1, n-k+1)*binomial(n+3, n-k+1).
T(2*n, n) = (1/2)*A000894(n) + (5/2)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n)*(-1)^(n/2)*A286033((n+4)/2) + (1-(-1)^n)*((-1)^((n+1)/2)*A000108((n+1)/2) - 1) ). (End)
Showing 1-2 of 2 results.