cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286945 Number of maximal matchings in the ladder graph P_2 X P_n.

Original entry on oeis.org

1, 2, 5, 11, 24, 51, 109, 234, 503, 1081, 2322, 4987, 10711, 23006, 49415, 106139, 227976, 489669, 1051759, 2259072, 4852259, 10422163, 22385754, 48082339, 103276009, 221826440, 476460797, 1023389687, 2198137722, 4721377893, 10141043023, 21781936530
Offset: 1

Views

Author

Andrew Howroyd, May 16 2017

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2,5,11,24];; for n in [6..35] do a[n]:=2*a[n-1]+a[n-4]+a[n-5]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5) )); // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(coeff(series(x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5), x, n+1), x, n), n = 1..35); # G. C. Greubel, Dec 30 2019
  • Mathematica
    Table[3Cos[nPi/3]/13 - 5Sin[nPi/3]/(13 Sqrt[3]) + RootSum[-1 -2# -#^2 +#^3 &, (-6 -72# +80#^2) #^n &]/403, {n, 35}] (* Eric W. Weisstein, Jul 13 2017 *)
    LinearRecurrence[{2,0,0,1,1}, {1,2,5,11,24}, 35] (* Eric W. Weisstein, Jul 13 2017 *)
    CoefficientList[Series[(1+x^2+x^3+x^4)/(1-2x-x^4-x^5), {x, 0, 35}], x] (* Eric W. Weisstein, Jul 13 2017 *)
  • PARI
    Vec((1+x^2+x^3+x^4)/((1-x+x^2)*(1-x-2*x^2-x^3)) + O(x^35))
    
  • Sage
    def A286945_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5) ).list()
    a=A286945_list(35); a[1:] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 2*a(n-1) + a(n-4) + a(n-5) for n>5.
G.f.: x*(1+x^2+x^3+x^4)/((1-x+x^2)*(1-x-2*x^2-x^3)).