A287695 Maximum number of diagonal Latin squares with the first row in ascending order that can be orthogonal to a given diagonal Latin square of order n.
1, 0, 0, 1, 1, 0, 3, 824, 614
Offset: 1
Examples
From _Eduard I. Vatutin_, Mar 29 2021: (Start) One of the best existing diagonal Latin squares of order 7 0 1 2 3 4 5 6 2 3 1 5 6 4 0 5 6 4 0 1 2 3 4 0 6 2 3 1 5 6 2 0 1 5 3 4 1 5 3 4 0 6 2 3 4 5 6 2 0 1 has 3 orthogonal mates 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 5 6 4 0 1 2 3 3 4 5 6 2 0 1 6 2 0 1 5 3 4 1 5 3 4 0 6 2 4 0 6 2 3 1 5 3 4 5 6 2 0 1 6 2 0 1 5 3 4 2 3 1 5 6 4 0 1 5 3 4 0 6 2 3 4 5 6 2 0 1 5 6 4 0 1 2 3 2 3 1 5 6 4 0 2 3 1 5 6 4 0 6 2 0 1 5 3 4 4 0 6 2 3 1 5 4 0 6 2 3 1 5 1 5 3 4 0 6 2 5 6 4 0 1 2 3 so a(7)=3. (End)
Links
- Natalia Makarova, Diagonal Latin square with 10 orthogonal squares
- Natalia Makarova, DB CF ODLS of order 9
- Natalia Makarova, Maximum number of normalized ODLS from one DLS
- Natalia Makarova, Comments for result a(12) >= 3855983322
- Natalia Makarova, New boundaries for maximum number of normalized orthogonal diagonal Latin squares to one diagonal Latin square
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru, square of order 9 with 516 orthogonal squares (in Russian).
- Eduard I. Vatutin, About the A328873(N)-1 <= A287695(N) inequality between the maximum cardinality of clique and the maximum number of orthogonal normalized mates for one diagonal Latin square (in Russian).
- Eduard I. Vatutin, About the diagonal Latin square of order 12 with 1764493860 orthogonal diagonal mates (in Russian).
- Eduard I. Vatutin, Duplicate solutions removing using parallel and distributed DLX (in Russian).
- Eduard I. Vatutin, Enumerating the Main Classes of Cyclic and Pandiagonal Latin Squares, Recognition — 2021, pp. 77-79. (in Russian)
- Eduard I. Vatutin, Proving list (best known examples).
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- Eduard I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk and V. S. Titov, Combinatorial characteristics estimating for pairs of orthogonal diagonal Latin squares, Multicore processors, parallel programming, FPGA, signal processing systems (2017), pp. 104-111 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- Index entries for sequences related to Latin squares and rectangles.
Extensions
Definition corrected by Max Alekseyev, Dec 07 2019
a(9) added by Eduard I. Vatutin, Dec 12 2020
Edited by Max Alekseyev, Apr 01 2022
Comments