cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A289384 Numbers k such that the sum of the divisors of k is of the form m^3 + 1.

Original entry on oeis.org

1, 12, 68, 82, 100, 730, 886, 1089, 1241, 1252, 1352, 1440, 1908, 2804, 2947, 3274, 5598, 6078, 7414, 9123, 10135, 10164, 10804, 10809, 11143, 12756, 13456, 13468, 15004, 21025, 23810, 24642, 25123, 26912, 26983, 34976, 37020, 40477, 45946, 48126, 55964, 56764
Offset: 1

Views

Author

Michel Lagneau, Jul 04 2017

Keywords

Comments

Perfect squares in the sequence are 1, 100, 1089, 13456, 21025, ...

Examples

			730 is in the sequence because sigma(730) = 1332 = 11^3 + 1.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1)) while (t->t<>
          iroot(t, 3)^3)(numtheory[sigma](k)-1) do od; k
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 04 2017
  • Mathematica
    fQ[n_] := ! PrimeQ@n && Block[{sd = DivisorSigma[1, n]}, IntegerQ[(sd - 1)^(1/3)]]; Select[Range@59323, fQ] (* Robert G. Wilson v, Jul 05 2017 *)
  • PARI
    isok(n) = ispower(sigma(n)-1, 3); \\ Michel Marcus, Jul 05 2017

Extensions

More terms from Alois P. Heinz, Jul 04 2017

A318169 Composite numbers k such that sigma_2(k) - 1 is a square, where sigma_2(k) = A001157(k) is the sum of squares of divisors of k.

Original entry on oeis.org

6, 40, 136, 2696, 3352, 46976, 223736, 5509736, 1915798072
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

This property is shared with all the primes since sigma_2(p) = 1 + p^2.
The values of sqrt(sigma_2(a(n))-1) are 7, 47, 157, 3107, 3863, 54243, 257843, 6349657, 2207848187.
Are there terms not of the form 2^k * p where p is prime? - David A. Corneth, Aug 20 2018
2*10^12 < a(10) <= 44463118771144. The terms 21687324345660824, 14524130539077100050485512, 287674439504279743204606472 (and others) of the form 2^k * p can be found by solving the quadratic Diophantine equation sigma_2(2^k) * (p^2 + 1) = x^2 + 1 for appropriate values of k. - Giovanni Resta, Aug 20 2018

Crossrefs

Programs

  • Magma
    [n: n in [2..6*10^6] |not IsPrime(n) and IsSquare(DivisorSigma(2, n)-1)]; // Vincenzo Librandi, Aug 22 2018
  • Mathematica
    sQ[n_] := IntegerQ[Sqrt[n]]; aQ[n_] := CompositeQ[n] && sQ[DivisorSigma[2,n]-1]; Select[Range[10000],aQ]
  • PARI
    forcomposite(n=2, 1e15, if( issquare(sigma(n,2)-1), print1(n, ", ")))
    
Showing 1-2 of 2 results.