cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166956 a(n) = 2^n +(-1)^n - 2.

Original entry on oeis.org

0, -1, 3, 5, 15, 29, 63, 125, 255, 509, 1023, 2045, 4095, 8189, 16383, 32765, 65535, 131069, 262143, 524285, 1048575, 2097149, 4194303, 8388605, 16777215, 33554429, 67108863, 134217725, 268435455, 536870909, 1073741823, 2147483645, 4294967295, 8589934589
Offset: 0

Views

Author

Paul Curtz, Oct 25 2009

Keywords

Comments

The inverse binomial transform yields 0,-1,5,-7,17,-31,..., a sign alternating variant of A014551.
In a table of a(n) and higher-order differences in successive rows, the main diagonal contains 0, 4, 8, 16, ... (zero followed by A020707).
Similar to the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero, which begins with 1,3,5,15,29,63,125. - Robert Price, Aug 08 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Magma
    [2^n-2+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
  • Mathematica
    LinearRecurrence[{2,1,-2},{0,-1,3},20] (* G. C. Greubel, May 29 2016 *)

Formula

a(n) = A000079(n) - A010684(n).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
G.f.: x*(5*x -1)/((1-x)*(1-2*x)*(1+x)).
E.g.f.: exp(2*x) - 2*exp(x) + exp(-x). - G. C. Greubel, May 29 2016

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010

A290660 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 11, 101, 1111, 11101, 111111, 1111101, 11111111, 111111101, 1111111111, 11111111101, 111111111111, 1111111111101, 11111111111111, 111111111111101, 1111111111111111, 11111111111111101, 111111111111111111, 1111111111111111101, 11111111111111111111
Offset: 0

Views

Author

Robert Price, Aug 08 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 899; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Chai Wah Wu, Aug 03 2020: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n > 3.
G.f.: (100*x^3 - 10*x^2 + x + 1)/((x - 1)*(x + 1)*(10*x - 1)). (End)

A290661 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 11, 101, 1111, 10111, 111111, 1011111, 11111111, 101111111, 1111111111, 10111111111, 111111111111, 1011111111111, 11111111111111, 101111111111111, 1111111111111111, 10111111111111111, 111111111111111111, 1011111111111111111, 11111111111111111111
Offset: 0

Views

Author

Robert Price, Aug 08 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 899; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Chai Wah Wu, Aug 03 2020: (Start)
a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) for n > 3.
G.f.: (10*x^3 - 10*x^2 + 10*x + 1)/((x - 1)*(10*x - 1)*(10*x + 1)). (End)
Showing 1-3 of 3 results.