cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A290732 Number of distinct values of X*(3*X-1)/2 mod n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 4, 8, 9, 6, 6, 12, 7, 8, 9, 16, 9, 18, 10, 12, 12, 12, 12, 24, 11, 14, 27, 16, 15, 18, 16, 32, 18, 18, 12, 36, 19, 20, 21, 24, 21, 24, 22, 24, 27, 24, 24, 48, 22, 22, 27, 28, 27, 54, 18, 32, 30, 30, 30, 36
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Examples

			The values taken by (3*X^2-X)/2 mod n for small n are:
   1, [0]
   2, [0, 1]
   3, [0, 1, 2]
   4, [0, 1, 2, 3]
   5, [0, 1, 2]
   6, [0, 1, 2, 3, 4, 5]
   7, [0, 1, 2, 5]
   8, [0, 1, 2, 3, 4, 5, 6, 7]
   9, [0, 1, 2, 3, 4, 5, 6, 7, 8]
  10, [0, 1, 2, 5, 6, 7]
  11, [0, 1, 2, 4, 5, 7]
  12, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
  ...
		

Crossrefs

Cf. A000224 (analog for X^2), A014113, A290729, A290730, A290731, A317623.

Programs

  • Maple
    a:=[]; M:=80;
    for n from 1 to M do
    q1:={};
    for i from 0 to 2*n-1 do q1:={op(q1), i*(3*i-1)/2 mod n}; od;
    s1:=sort(convert(q1,list));
    a:=[op(a),nops(s1)];
    od:
    a;
  • Mathematica
    a[n_] := Table[PolynomialMod[X(3X-1)/2, n], {X, 0, 2*n-1}]// Union // Length;
    Array[a, 60] (* Jean-François Alcover, Sep 01 2018 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, 2*n-1, v[i*(3*i-1)/2%n + 1]=1); vecsum(v)} \\ Andrew Howroyd, Oct 27 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p<=3, p^e, 1 + p^(e+1)\(2*p+2)))} \\ Andrew Howroyd, Nov 03 2018

Formula

a(3^n) = 3^n. - Hugo Pfoertner, Aug 25 2018
a(n) = A317623(n) * A040001(n). - Andrew Howroyd, Oct 27 2018
Multiplicative with a(2^e) = 2^e, a(3^e) = 3^e, a(p^e) = 1 + floor( p^(e+1)/(2*p+2) ) for prime p >= 5. - Andrew Howroyd, Nov 03 2018

Extensions

Even terms corrected by Andrew Howroyd, Nov 03 2018

A376202 Number of pairs 1 <= x <= y <= n-1 such that gcd(x,n) = gcd(y,n) = gcd(x+y,n) = 1 and 1/x + 1/y == 1/(x+y) mod n.

Original entry on oeis.org

0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 36, 0, 24, 0, 0, 0, 42, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 60, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 60, 0, 0, 0, 96, 0, 0, 0, 0, 0, 102, 0, 0
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Comments

In general, 1/x + 1/y = 1/(x+y) is the wrong way to add fractions!
See A376203 for a(2*n-1)/2 and A376755 for a(6*n+1)/6.
From Robert Israel, Nov 06 2024: (Start)
If a(n) = 0 then a(m) = 0 whenever m is a multiple of n.
It appears that the primes p for which a(p) > 0 are A007645. (End)

Examples

			For n = 3 the a(3) = 2 solutions are (x,y) = (1,1) and (2,2).
For n = 7 the a(7) = 6 solutions are (x,y) = (1,2), (1,4), (2,4), (3,5), (3,6), (5,6).
		

Crossrefs

Programs

  • Maple
    a:=[];
    for n from 1 to 140 do
    c:=0;
    for y from 1 to n-1 do
    for x from 1 to y do
    if gcd(y,n) = 1 and gcd(x,n) = 1 and gcd(x+y,n) = 1  and (1/x + 1/y - 1/(x+y)) mod n = 0 then c:=c+1; fi;
    od: # od x
    od: # od y
    a:=[op(a),c];
    od: # od n
    a;
  • Python
    from math import gcd
    def A376202(n):
        c = 0
        for x in range(1,n):
            if gcd(x,n) == 1:
                for y in range(x,n):
                    if gcd(y,n)==gcd(z:=x+y,n)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%n:
                        c += 1
        return c # Chai Wah Wu, Oct 06 2024

A376203 a(n) = A376202(2*n-1)/2.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 0, 0, 9, 6, 0, 0, 0, 0, 15, 0, 0, 18, 12, 0, 21, 0, 0, 21, 0, 0, 0, 18, 0, 30, 0, 0, 33, 0, 0, 36, 0, 0, 39, 0, 0, 0, 0, 0, 72, 30, 0, 48, 0, 0, 51, 0, 0, 54, 36, 0, 0, 0, 0, 0, 0, 0, 63, 42, 0, 108, 0, 0, 69
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A376203(n):
        c, m = 0, (n<<1)-1
        for x in range(1,m):
            if gcd(x,m) == 1:
                for y in range(x,m):
                    if gcd(y,m)==gcd(z:=x+y,m)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%m:
                        c += 1
        return c>>1 # Chai Wah Wu, Oct 06 2024

A376755 a(n) = A376202(6*n+1)/6.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, 7, 0, 10, 11, 12, 13, 0, 24, 16, 17, 18, 0, 0, 21, 36, 23, 0, 25, 26, 27, 26, 0, 30, 0, 32, 33, 0, 35, 60, 37, 38, 0, 40, 72, 0, 72, 0, 45, 46, 47, 0, 0, 84, 51, 52, 0, 0, 55, 56, 49, 58, 0, 57, 61, 62, 63, 0, 0, 66, 120, 68, 0, 70, 120, 72
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A376755(n):
        c, m = 0, 6*n|1
        for x in range(1,m):
            if gcd(x,m) == 1:
                for y in range(x,m):
                    if gcd(y,m)==gcd(z:=x+y,m)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%m:
                        c += 1
        return c//6 # Chai Wah Wu, Oct 06 2024

Extensions

a(51)-a(72) from Chai Wah Wu, Oct 06 2024

A376756 Number of pairs 0 <= x <= y <= n-1 such that x^2 + x*y + y^2 == 0 (mod n).

Original entry on oeis.org

1, 1, 3, 3, 1, 3, 7, 3, 6, 1, 1, 9, 13, 7, 3, 10, 1, 6, 19, 3, 21, 1, 1, 9, 15, 13, 18, 27, 1, 3, 31, 10, 3, 1, 7, 21, 37, 19, 39, 3, 1, 21, 43, 3, 6, 1, 1, 30, 70, 15, 3, 51, 1, 18, 1, 27, 57, 1, 1, 9, 61, 31, 60, 36, 13, 3, 67, 3, 3, 7, 1, 21, 73, 37, 45, 75, 7, 39, 79, 10, 45, 1, 1, 81, 1, 43, 3, 3, 1, 6, 163, 3, 93, 1, 19, 30, 97
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    def A376756(n):
        c = 0
        for x in range(n):
            z = x**2%n
            for y in range(x,n):
                if not (z+y*(x+y))%n:
                    c += 1
        return c # Chai Wah Wu, Oct 06 2024

A376757 Number of pairs 0 <= x <= y <= n-1 such that x^3 == y^3 (mod n).

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 13, 14, 18, 10, 11, 15, 25, 26, 15, 28, 17, 36, 37, 25, 39, 22, 23, 42, 35, 50, 81, 71, 29, 30, 61, 72, 33, 34, 65, 99, 73, 74, 75, 70, 41, 78, 85, 55, 90, 46, 47, 84, 112, 70, 51, 137, 53, 162, 55, 218, 111, 58, 59, 75, 121, 122, 288, 208, 125, 66, 133, 85, 69, 130, 71, 306, 145, 146, 105, 203, 143, 150, 157
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Comments

A087786 includes pairs (x,y) with x>y (which are excluded from the present sequence).

Crossrefs

Programs

  • PARI
    a(n) = sum(x=0, n-1, sum(y=x, n-1, Mod(x, n)^3 == Mod(y, n)^3)); \\ Michel Marcus, Oct 06 2024
    
  • Python
    from collections import Counter
    def A376757(n): return sum(d*(d+1)>>1 for d in Counter(pow(x,3,n) for x in range(n)).values()) # Chai Wah Wu, Oct 06 2024

A290727 Analog of A085635, replacing "quadratic residue" (X^2) with "value of X^2+X".

Original entry on oeis.org

1, 2, 6, 10, 14, 18, 30, 42, 66, 70, 90, 126, 198, 210, 330, 390, 450, 630, 990, 1170, 1386, 1638, 2142, 2310, 2730, 3150, 4950, 5850, 6930, 8190, 10710, 11970, 12870, 16830, 18018, 23562, 26334, 27846, 30030, 34650
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Comments

Positions where R(k) = A290731(k)/k achieves a new minimum, i.e., R(k) < R(j), j = 0..k-1, R(0) = 2.

Crossrefs

Programs

  • Mathematica
    a290731[n_] := Product[{p, e} = pe; If[p == 2, 2^(e-1), 1+Quotient[p^(e+1), (2p+2)]], {pe, FactorInteger[n]}];
    Reap[For[r = 2; k = 1, k <= 35000, k++, t = a290731[k]/k; If[tJean-François Alcover, Sep 03 2018, from PARI *)
  • PARI
    a290731(n)={my(f=factor(n));prod(i=1,#f~,my([p,e]=f[i,]);if(p==2,2^(e-1),1+p^(e+1)\(2*p+2)))} \\ from Andrew Howroyd
    r=2;for(k=1,40000,t=a290731(k)/k;if(tHugo Pfoertner, Aug 23 2018

Extensions

More terms from Hugo Pfoertner, Aug 22 2018
Initial term added by Hugo Pfoertner, Aug 23 2018

A290728 Analog of A084848, replacing "quadratic residue" (X^2) with "value of X^2+X".

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 8, 12, 12, 12, 16, 24, 24, 36, 42, 44, 48, 72, 84, 96, 112, 144, 144, 168, 176, 264, 308, 288, 336, 432, 480, 504, 648, 672, 864, 960, 1008, 1008, 1056, 1232, 1584, 1760, 1848, 2376, 2016, 2592
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a290731[n_] := Product[{p, e} = pe; If[p==2, 2^(e-1), 1 + Quotient[p^(e+1), (2p + 2)]], {pe, FactorInteger[n]}];
    Reap[For[r = 2; k = 1, k <= 200000, k++, v = a290731[k]; t = v/k; If[t < r, r = t; Sow[v]]]][[2, 1]] (* Jean-François Alcover, Sep 13 2018, from PARI *)
  • PARI
    a290731(n)={my(f=factor(n));prod(i=1,#f~,my([p,e]=f[i,]);if(p==2,2^(e-1),1+p^(e+1)\(2*p+2)))} \\ from Andrew Howroyd
    r=2;for(k=1,200000,v=a290731(k);t=v/k;if(tHugo Pfoertner, Aug 23 2018

Formula

a(n) = A290731(A290727(n)) - Hugo Pfoertner, Aug 23 2018

Extensions

More terms from Hugo Pfoertner, Aug 22 2018
Initial term added by Hugo Pfoertner, Aug 23 2018

A317623 Number of distinct values of X*(3*X-1) mod n.

Original entry on oeis.org

1, 1, 3, 2, 3, 3, 4, 4, 9, 3, 6, 6, 7, 4, 9, 8, 9, 9, 10, 6, 12, 6, 12, 12, 11, 7, 27, 8, 15, 9, 16, 16, 18, 9, 12, 18, 19, 10, 21, 12, 21, 12, 22, 12, 27, 12, 24, 24, 22, 11, 27, 14, 27, 27, 18, 16, 30, 15, 30, 18, 31, 16, 36, 32, 21, 18, 34, 18, 36, 12, 36
Offset: 1

Views

Author

Andrew Howroyd, Aug 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 2^(e-1); f[3, e_] := 3^e; f[p_, e_] := 1 + Floor[p^(e+1)/(2*p+2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i*(3*i-1)%n + 1]=1); vecsum(v)}
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p<=3, if(p==2, 2^(e-1), 3^e), 1 + p^(e+1)\(2*p+2)))}

Formula

Multiplicative with a(2^e) = 2^(e-1), a(3^e) = 3^e, a(p^e) = 1 + floor( p^(e+1)/(2*p+2) ) for prime p >= 5.

A328701 Period in residues modulo n in iteration of x^2 + x + 1 starting at 0.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 4, 2, 1, 2, 2, 3, 3, 2, 8, 1, 2, 2, 2, 6, 2, 4, 4, 4, 3, 2, 6, 7, 2, 7, 16, 2, 1, 3, 2, 3, 2, 6, 4, 7, 6, 5, 2, 2, 4, 5, 8, 3, 4, 2, 6, 1, 2, 2, 12, 2, 7, 11, 2, 4, 7, 6, 32, 3, 2, 2, 2, 4, 3, 10, 4, 18, 3, 4, 2, 6, 6, 3, 8, 2, 7, 2, 6, 1, 5, 14, 4, 1, 2, 3
Offset: 1

Views

Author

Jianing Song, Oct 26 2019

Keywords

Comments

a(n) is the period of {A002065 mod n}.
Let f(0) = 0, f(k+1) = (f(k)^2+f(k)+1) mod n, then a(n) is the smallest t such that f(i) = f(i+t) for all sufficiently large i.
Obviously a(n) <= A290731(n): f(1), f(2), ..., f(A290731(n)+1) are all of the form (s^2+s+1) mod n, so there must exists 1 <= i < j <= A290731(n)+1 such that f(i) = f(j), and a(n) <= j - i <= A290731(n). The equality seems to hold only for n = 3, 6 or n is a power of 2.

Examples

			In the following example, () denotes the cycles.
A002065(n) mod 4: 0, (1, 3), so a(4) = 2.
A002065(n) mod 7: 0, (1, 3, 6), so a(7) = 3.
A002065(n) mod 29: 0, (1, 3, 13, 9, 4, 21, 28), so a(29) = 7.
A002065(n) mod 61: (0, 1, 3, 13). {A002065(n) mod 61} enters into the cycle (0, 1, 3, 13) from the very beginning, so a(61) = 0.
A002065(n) mod 64: 0, (1, 3, 13, 55, 9, 27, 53, 47, 17, 51, 29, 39, 25, 11, 5, 31, 33, 35, 45, 23, 41, 59, 21, 15, 49, 19, 61, 7, 57, 43, 37, 63), so a(64) = 32.
		

Crossrefs

Cf. A002065, A328702 (indices to enter the cycles), A290731.

Programs

  • PARI
    a(n) = my(v=[0],k); for(i=2, n+1, k=(v[#v]^2+v[#v]+1)%n; v=concat(v, k); for(j=1, i-1, if(v[j]==k, return(i-j))))

Formula

a(n1*n2) = lcm(a(n1),a(n2)) if gcd(n1,n2) = 1.
It seems that for e > 0, a(3^e) = 2; a(5^e) = 1 if e = 1, 4*5^(e-2) otherwise; a(7^e) = 3; a(11^e) = 2 if e = 1, 10*11^(e-2) otherwise; a(13^e) = 3 if e = 1, 12*13^(e-2) otherwise ...
Proof that a(2^e) = 2^(e-1) by induction: we will show that {f(1), f(2), ..., f(2^(e-1))} is a reduced system modulo 2^e, where f is defined in the comment section. It is easy to see that this is true for e = 1, 2.
Suppose that {f(1), f(2), ..., f(2^(e-1))} is a reduced system modulo 2^e, e = 1, 2. For each 1 <= i <= 2^(e-1), f(2^(e-1)+i) - f(i) = Sum_{j=i..2^(e-1)+i-1} (f(j+1)-f(j)) = Sum_{j=i..2^(e-1)+i-1} (f(j)^2+1) = 2^(e-1) + Sum_{j=i..2^(e-1)+i-1} f(j)^2. Of course, {f(i), f(i+1), ..., f(2^(e-1)+i-1)} is also a reduced system modulo 2^e.
Note that if x == y (mod 2^e), then x^2 == y^2 (mod 2^(e+1)). So f(2^(e-1)+i) - f(i) == 2^(e-1) + (1^2+3^2+5^2+...+(2^e-1)^2) == 2^e (mod 2^(e+1)), 1 <= i <= 2^(e-1). This shows that {f(1), f(2), ..., f(2^(e-1)), f(2^(e-1)+1), f(2^(e-1)+2), ..., f(2^e)} is a reduced system modulo 2^(e+1). QED.
Showing 1-10 of 11 results. Next