cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305199 Expansion of e.g.f. Product_{k>=1} (1 + x^k/k)/(1 - x^k/k).

Original entry on oeis.org

1, 2, 6, 28, 152, 1008, 7756, 67688, 659424, 7123776, 84154224, 1079913888, 14962632384, 222447507072, 3531920599008, 59664827178048, 1067975819206656, 20192760528611328, 402169396496004864, 8414121277765679616, 184498963978904644608, 4231186653661629843456
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Comments

Exponential convolution of the sequences A007838 and A007841.

Crossrefs

Programs

  • Maple
    a:=series(mul((1+x^k/k)/(1-x^k/k),k=1..100),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k/k)/(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(1 + (-1)^(k + 1)) x^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (1 + (-1)^(k+1))*x^(j*k)/(k*j^k)).
a(n) ~ sqrt(Pi/2) * n^(n + 5/2) / exp(n + 2*gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 26 2019

A294471 E.g.f.: 1/Product_{k>0} (1+x^k/k)^k.

Original entry on oeis.org

1, -1, 0, -6, 18, -90, 660, -3360, 47880, -293160, 4277280, -36424080, 575190000, -6745218480, 101911249440, -1628086299840, 24861230634240, -484979925830400, 7629427896330240, -176975913961566720, 3036472694482106880, -77953392499390087680
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2017

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1/Product[(1+x^k/k)^k,{k,nn}],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 30 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1+x^k/k)^k)))

A328193 Expansion of e.g.f. Sum_{k>=1} log(1/(1 + (-x)^k/k)).

Original entry on oeis.org

1, 0, 4, 3, 48, 10, 1440, 1890, 85120, 49896, 7257600, 6883800, 958003200, 792277200, 178919989248, 194107914000, 41845579776000, 29714949264000, 12804747411456000, 12900082757417856, 4918792391884800000, 4594737608304480000, 2248001455555215360000
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*add((-1)^(n-d)/(d*(n/d)^d), d=numtheory[divisors](n)):
    seq(a(n), n=1..24);  # Alois P. Heinz, Oct 30 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[Log[1/(1 + (-x)^k/k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! Sum[(-1)^(n - d)/(d (n/d)^d), {d, Divisors[n]}], {n, 1, 23}]

Formula

a(n) = n! * Sum_{d|n} (-1)^(n - d) / (d * (n/d)^d).

A346313 Sum_{n>=0} a(n) * x^n / (n!)^2 = Product_{n>=1} 1 / (1 + (-x)^n / n^2).

Original entry on oeis.org

1, 1, 3, 31, 496, 12576, 444736, 22056448, 1406058816, 114618828096, 11405077216704, 1385889578069184, 198961869847145472, 33725910553646229504, 6594186368339077238784, 1487133154121568112705536, 379990326228614750079369216, 110013397755650063836228435968
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[Product[1/(1 + (-x)^k/k^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[(-1)^k (Binomial[n, k] k!)^2 Sum[(-1)^d/(k/d)^(2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} (-1)^k * (binomial(n,k) * k!)^2 * ( Sum_{d|k} (-1)^d / (k/d)^(2*d-1) ) * a(n-k).
Showing 1-4 of 4 results.