cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A088994 Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.

Original entry on oeis.org

1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003

Keywords

Comments

a(n) is the number of n-permutations composed only of odd cycles of distinct length. - Geoffrey Critzer, Mar 08 2013
Also the number of permutations p of [n] with unique (functional) square root, i.e., there exists a unique permutation g such that g^2 = p. - Keith J. Bauer, Jan 08 2024

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
  • PARI
    {a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */

Formula

E.g.f.: Product_{m >= 1} (1+x^(2*m-1)/(2*m-1)). - Vladeta Jovovic, Nov 05 2003
a(n) ~ exp(-gamma/2) * n! / sqrt(2*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
a(n) = n! - A088335(n). - Alois P. Heinz, Jan 27 2020

Extensions

More terms from Vladeta Jovovic, Nov 03 2003
a(0)=1 prepended by Seiichi Manyama, Nov 01 2017

A087639 E.g.f.: Product_{m >= 1} (1+x^(2*m)/(2*m)) (even powers only).

Original entry on oeis.org

1, 1, 6, 210, 8400, 740880, 88814880, 15217282080, 3319002086400, 992431440000000, 351841557779712000, 156995673442223616000, 82429416503416958976000, 52017974139195896832000000, 37547796668359538444083200000, 31987697744989345038846566400000
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003

Keywords

Comments

Number of permutations of 2*n elements with distinct cycle lengths and without odd cycles. - Vladeta Jovovic, Aug 17 2004

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`((i/2)*(i/2+1)n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..17);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[Product[1 + x^(2*k)/(2*k), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Jul 23 2019 *)

Formula

a(n) ~ 2*exp(-gamma/2) * (2*n)! / (Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019

Extensions

More terms from Christian G. Bower, Jan 06 2006

A326859 E.g.f.: Product_{k>=1} (1 + x^(2*k-1)/(2*k-1)) / (1 - x^(2*k-1)/(2*k-1)).

Original entry on oeis.org

1, 2, 4, 16, 80, 448, 3136, 24512, 218368, 2169600, 23752704, 282882048, 3661787136, 51076644864, 763127316480, 12184024793088, 206679198990336, 3710945850949632, 70379726872117248, 1405297582300200960, 29462283451103182848, 647386758393297371136
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+x^(2*k-1)/(2*k-1))/(1-x^(2*k-1)/(2*k-1)), {k, 1, Floor[nmax/2]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ exp(-gamma) * n * n!, where gamma is the Euler-Mascheroni constant A001620.

A326860 E.g.f.: Product_{k>=1} (1 + x^(3*k-1)/(3*k-1)) / (1 - x^(3*k-1)/(3*k-1)).

Original entry on oeis.org

1, 0, 2, 0, 12, 48, 180, 2016, 15120, 72576, 1424304, 11249280, 113164128, 2066238720, 22751977248, 303261573888, 6400216892160, 85934653249536, 1440131337066240, 34330891188013056, 549029461368181248, 11212163885207900160, 296439802585781976576
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Comments

In general, if c > 0, mod(d,c) <> 0, mod(d,c) <> 1 and e.g.f. = Product_{k>=1} (1 + x^(c*k+d)/(c*k+d)) / (1 - x^(c*k+d)/(c*k+d)), then a(n) ~ Gamma(1 + (d-1)/c) * n^(2/c - 1) * n! / (c^(2/c) * exp(2*gamma/c) * Gamma(2/c) * Gamma(1 + (d+1)/c)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1))/(1-x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ exp(-2*gamma/3) * Gamma(1/3)^2 * n! / (2 * 3^(1/6) * Pi * n^(1/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326861 E.g.f.: Product_{k>=1} (1 + x^(3*k-2)/(3*k-2)) / (1 - x^(3*k-2)/(3*k-2)).

Original entry on oeis.org

1, 2, 4, 12, 60, 360, 2160, 16560, 149040, 1386720, 14592960, 174208320, 2173897440, 29413264320, 437473872000, 6792952636800, 112213292716800, 2002551280012800, 37194983281843200, 726119227314201600, 15112608758893324800, 326665495054151193600
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Comments

In general, if c > 0, d = 1-c and e.g.f. = Product_{k>=1} (1 + x^(c*k+d)/(c*k+d)) / (1 - x^(c*k+d)/(c*k+d)), then a(n) ~ 2 * n^(2/c) * n! / (c^(2/c) * exp(2*gamma/c) * Gamma(1 + 2/c)^2), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-2)/(3*k-2))/(1-x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 3^(7/3) * exp(-2*gamma/3) * Gamma(1/3)^2 * n^(2/3) * n! / (8 * Pi^2), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326862 E.g.f.: Product_{k>=1} (1 + x^(4*k-1)/(4*k-1)) / (1 - x^(4*k-1)/(4*k-1)).

Original entry on oeis.org

1, 0, 0, 4, 0, 0, 160, 1440, 0, 26880, 691200, 7257600, 11827200, 395366400, 14125363200, 185119334400, 442810368000, 24049778688000, 919255538073600, 13662913904640000, 54833495408640000, 3627817738960896000, 142917996623560704000, 2442221696292618240000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-1)/(4*k-1))/(1-x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ exp(-gamma/2) * n! / (2*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A326887 E.g.f.: Product_{k>=1} (1 + (exp(x)-1)^k/k) / (1 - (exp(x)-1)^k/k).

Original entry on oeis.org

1, 2, 8, 48, 364, 3320, 35464, 433692, 5962548, 90931152, 1522657264, 27765229844, 547487475484, 11604952395816, 263091290017560, 6351255101776812, 162643987129698628, 4403250400372110656, 125649232950852714496, 3769013390615951560068, 118555772298034094231724
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+(Exp[x]-1)^k/k)/(1-(Exp[x]-1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} A305199(k)*Stirling2(n,k).
a(n) ~ n * (n+1)! / (16 * exp(2*gamma) * log(2)^(n+3)), where gamma is the Euler-Mascheroni constant A001620.

A306041 Expansion of e.g.f. Product_{k>=1} (1 + x^k/k!)/(1 - x^k/k!).

Original entry on oeis.org

1, 2, 6, 26, 126, 742, 4986, 37942, 321502, 3026150, 31198206, 351179182, 4282131354, 56334933358, 795191463982, 12001157392246, 192825757504222, 3288240179785318, 59314678786251486, 1128751491248706814, 22599321692994969886, 474961934284902165190, 10454818842695667265942
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 17 2018

Keywords

Comments

Exponential convolution of the sequences A005651 and A007837.

Crossrefs

Programs

  • Maple
    a:=series(mul((1+x^k/k!)/(1-x^k/k!),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 + x^k/k!)/(1 - x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(1 + (-1)^(k + 1)) x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (1 + (-1)^(k+1))*x^(j*k)/(k*(j!)^k)).

A326863 E.g.f.: Product_{k>=1} (1 + x^(4*k-3)/(4*k-3)) / (1 - x^(4*k-3)/(4*k-3)).

Original entry on oeis.org

1, 2, 4, 12, 48, 288, 2016, 14112, 112896, 1096704, 12063744, 135894528, 1630734336, 22157549568, 331366920192, 5107664314368, 82057393668096, 1436821272133632, 27168078863794176, 528845513033908224, 10627947138360803328, 228216184936879620096, 5219125284175176794112
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-3)/(4*k-3))/(1-x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 4 * exp(-gamma/2) * sqrt(n) * n! / Pi, where gamma is the Euler-Mascheroni constant A001620.
Showing 1-9 of 9 results.