A088994
Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.
Original entry on oeis.org
1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003
-
b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> b(n, n-1+irem(n, 2)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 01 2017
-
nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
-
{a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */
A087639
E.g.f.: Product_{m >= 1} (1+x^(2*m)/(2*m)) (even powers only).
Original entry on oeis.org
1, 1, 6, 210, 8400, 740880, 88814880, 15217282080, 3319002086400, 992431440000000, 351841557779712000, 156995673442223616000, 82429416503416958976000, 52017974139195896832000000, 37547796668359538444083200000, 31987697744989345038846566400000
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
-
b:= proc(n, i) option remember; `if`((i/2)*(i/2+1)n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..17); # Alois P. Heinz, Nov 01 2017
-
nmax = 20; Table[(CoefficientList[Series[Product[1 + x^(2*k)/(2*k), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Jul 23 2019 *)
A326859
E.g.f.: Product_{k>=1} (1 + x^(2*k-1)/(2*k-1)) / (1 - x^(2*k-1)/(2*k-1)).
Original entry on oeis.org
1, 2, 4, 16, 80, 448, 3136, 24512, 218368, 2169600, 23752704, 282882048, 3661787136, 51076644864, 763127316480, 12184024793088, 206679198990336, 3710945850949632, 70379726872117248, 1405297582300200960, 29462283451103182848, 647386758393297371136
Offset: 0
-
nmax = 25; CoefficientList[Series[Product[(1+x^(2*k-1)/(2*k-1))/(1-x^(2*k-1)/(2*k-1)), {k, 1, Floor[nmax/2]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326860
E.g.f.: Product_{k>=1} (1 + x^(3*k-1)/(3*k-1)) / (1 - x^(3*k-1)/(3*k-1)).
Original entry on oeis.org
1, 0, 2, 0, 12, 48, 180, 2016, 15120, 72576, 1424304, 11249280, 113164128, 2066238720, 22751977248, 303261573888, 6400216892160, 85934653249536, 1440131337066240, 34330891188013056, 549029461368181248, 11212163885207900160, 296439802585781976576
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1))/(1-x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326861
E.g.f.: Product_{k>=1} (1 + x^(3*k-2)/(3*k-2)) / (1 - x^(3*k-2)/(3*k-2)).
Original entry on oeis.org
1, 2, 4, 12, 60, 360, 2160, 16560, 149040, 1386720, 14592960, 174208320, 2173897440, 29413264320, 437473872000, 6792952636800, 112213292716800, 2002551280012800, 37194983281843200, 726119227314201600, 15112608758893324800, 326665495054151193600
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-2)/(3*k-2))/(1-x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326862
E.g.f.: Product_{k>=1} (1 + x^(4*k-1)/(4*k-1)) / (1 - x^(4*k-1)/(4*k-1)).
Original entry on oeis.org
1, 0, 0, 4, 0, 0, 160, 1440, 0, 26880, 691200, 7257600, 11827200, 395366400, 14125363200, 185119334400, 442810368000, 24049778688000, 919255538073600, 13662913904640000, 54833495408640000, 3627817738960896000, 142917996623560704000, 2442221696292618240000
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-1)/(4*k-1))/(1-x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326887
E.g.f.: Product_{k>=1} (1 + (exp(x)-1)^k/k) / (1 - (exp(x)-1)^k/k).
Original entry on oeis.org
1, 2, 8, 48, 364, 3320, 35464, 433692, 5962548, 90931152, 1522657264, 27765229844, 547487475484, 11604952395816, 263091290017560, 6351255101776812, 162643987129698628, 4403250400372110656, 125649232950852714496, 3769013390615951560068, 118555772298034094231724
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1+(Exp[x]-1)^k/k)/(1-(Exp[x]-1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
A306041
Expansion of e.g.f. Product_{k>=1} (1 + x^k/k!)/(1 - x^k/k!).
Original entry on oeis.org
1, 2, 6, 26, 126, 742, 4986, 37942, 321502, 3026150, 31198206, 351179182, 4282131354, 56334933358, 795191463982, 12001157392246, 192825757504222, 3288240179785318, 59314678786251486, 1128751491248706814, 22599321692994969886, 474961934284902165190, 10454818842695667265942
Offset: 0
-
a:=series(mul((1+x^k/k!)/(1-x^k/k!),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Product[(1 + x^k/k!)/(1 - x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(1 + (-1)^(k + 1)) x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
A326863
E.g.f.: Product_{k>=1} (1 + x^(4*k-3)/(4*k-3)) / (1 - x^(4*k-3)/(4*k-3)).
Original entry on oeis.org
1, 2, 4, 12, 48, 288, 2016, 14112, 112896, 1096704, 12063744, 135894528, 1630734336, 22157549568, 331366920192, 5107664314368, 82057393668096, 1436821272133632, 27168078863794176, 528845513033908224, 10627947138360803328, 228216184936879620096, 5219125284175176794112
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-3)/(4*k-3))/(1-x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
Showing 1-9 of 9 results.
Comments