cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007838 Number of permutations of n elements with distinct cycle lengths.

Original entry on oeis.org

1, 1, 1, 5, 14, 74, 474, 3114, 24240, 219456, 2231280, 23753520, 288099360, 3692907360, 51677246880, 775999798560, 12364465397760, 208583679951360, 3770392002048000, 71251563061002240, 1421847102467635200, 29861872557056870400, 655829140087057305600
Offset: 0

Views

Author

Keywords

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, 2nd ed., Birkhäuser, Boston, 1982.

Crossrefs

Programs

  • Maple
    p := product((1+x^m/m), m=1..100): s := series(p,x,100): for i from 1 to 100 do printf(`%.0f,`,i!*coeff(s,x,i)) od:
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 23 2022
  • Mathematica
    max = 20; p = Product[(1 + x^m/m), {m, 1, max}]; s = Series[p, {x, 0, max}]; CoefficientList[s, x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    {a(n)=if(n<0, 0, n!*polcoeff( prod(k=1, n, 1+x^k/k, 1+x*O(x^n)), n))} /* Michael Somos, Sep 19 2006 */

Formula

E.g.f.: Product_{m >= 1} (1+x^m/m).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)^(1-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
Asymptotics: a(n) ~ n!(e^{-g} + e^{-g}/n + O((log n)/n^2)), where g is the Euler gamma.
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018

Extensions

More terms from James Sellers, Dec 24 1999

A088994 Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.

Original entry on oeis.org

1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003

Keywords

Comments

a(n) is the number of n-permutations composed only of odd cycles of distinct length. - Geoffrey Critzer, Mar 08 2013
Also the number of permutations p of [n] with unique (functional) square root, i.e., there exists a unique permutation g such that g^2 = p. - Keith J. Bauer, Jan 08 2024

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
  • PARI
    {a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */

Formula

E.g.f.: Product_{m >= 1} (1+x^(2*m-1)/(2*m-1)). - Vladeta Jovovic, Nov 05 2003
a(n) ~ exp(-gamma/2) * n! / sqrt(2*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
a(n) = n! - A088335(n). - Alois P. Heinz, Jan 27 2020

Extensions

More terms from Vladeta Jovovic, Nov 03 2003
a(0)=1 prepended by Seiichi Manyama, Nov 01 2017

A294506 E.g.f.: 1/Product_{k>0} (1-x^(2*k-1)/(2*k-1)).

Original entry on oeis.org

1, 1, 2, 8, 32, 184, 1184, 9008, 74752, 726528, 7583232, 87931392, 1092516864, 14863589376, 215094226944, 3358032635904, 55181218873344, 970561417248768, 17945595514847232, 351221170194874368, 7186120683011702784, 155103171658691641344
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1/Product[(1-x^(2*k-1)/(2*k-1)), {k, 1, Floor[nmax/2] + 1}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 02 2017 *)

Formula

a(n) ~ 2*exp(-gamma/2) * sqrt(2*n) * n! / Pi, where gamma is the Euler-Mascheroni constant A001620 [Lehmer, 1972]. - Vaclav Kotesovec, Jul 23 2019

A309319 E.g.f.: 1/Product_{k>0} (1 - x^(2*k)/(2*k)) (even powers only).

Original entry on oeis.org

1, 1, 12, 300, 15960, 1232280, 157006080, 25418352960, 5859886032000, 1655203620470400, 604893737678630400, 261278195494386470400, 140231830875916632652800, 86107922772424330377600000, 63316800257542340301112320000, 52666943508290765740968161280000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[1/Product[(1 - x^(2*k)/(2*k)), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2 n + 1]], {n, 0, nmax}]

Formula

a(n) ~ exp(-gamma/2) * (2*n)! / sqrt(n) [Lehmer, 1972], where gamma is the Euler-Mascheroni constant A001620.
Showing 1-4 of 4 results.